Генеалогия нейронов - Сахаров Дмитрий Антонович (книга бесплатный формат .TXT) 📗
Накопленные данные, хотя они и далеки от полноты, дают некоторое представление о том, насколько разнородна нейронная популяция у улитки. Особенно богатую информацию об этом дают электронно-микроскопические исследования. При рассмотрении этих результатов мы можем исходить из утверждённого опытом современной нейробиологии положения, что особенному типу передачи в химических синапсах соответствует особенный ультраструктурный тип секреторных органелл. Полученные нами данные, дополненные литературными, свидетельствуют, таким образом, о том, что нейроны и синапсы улитки относятся к большому числу разных химических типов. Одновременно электронно-микроскопические данные полностью подтверждают факт постоянства нейронной мозаики и картины нервных связей: клетки определенного типа имеют закономерное расположение и иннервация определённых эффекторных клеток всегда осуществляется совершенно определёнными типами нервных окончаний.
Конечно, в разных участках нервной системы неизбежно обнаруживаются не только разные, но и одинаковые клетки или волокна. Так, варикозные терминальные волокна, содержащие первичный катехоламин (как это следует из данных гистохимии), обнаруживаются электронно-микроскопически в процеребруме и в тентакулярном ганглии, проявляя в том и другом месте одинаковые ультраструктурные характеристики; возможно, такими же являются волокна, дающие один из типов моторных окончаний в стенке тела, ноге и ретракторе пениса. Но эти единичные факты дублирования не должны заслонить общей картины разнообразия типов химической специфичности. Особенно бросается в глаза широкое распространение и обилие нейронов, содержащих тот или иной тип крупных, предположительно пептидергических гранул. Такие клетки не только богато представлены количественно, но и проявляют большое число разных типов. Это обращает на себя внимание как резкий контраст по сравнению с тем, что известно для млекопитающих. Кроме того, у млекопитающих пептидергические нейроны выполняют нейросекреторные функции, тогда как у улитки мы находим как нейросекреторные, так и синаптические окончания, заполненные теми или иными пептидергическими гранулами.
Нельзя не обратить внимания и на то, насколько разнообразны у улитки типы нейро-эффекторных окончаний. В одном мышечном органе (например, сердце, нога) здесь деятельностью мышечных клеток управляют три-четыре типа нервных элементов, различающихся по своему медиаторному химизму, — и эти микроскопические данные находят полное подтверждение в результатах физиологических исследований. При этом остаются полностью неизученными нейро-эффекторные отношения в целых системах органов улитки — в половой, пищеварительной, выделительной и т. д., где медиаторное разнообразие, быть может, окажется ещё более выраженным.
Однако даже из имеющегося ограниченного материала видно, что в распределении этого разнообразия эфферентных нервных элементов есть закономерность. В иннервации ретрактора пениса участвуют, судя по описаниям, те же типы нервных волокон, которые представлены в ноге. Смысл этого совпадения станет понятным, если вспомнить, что ретрактор пениса имеет у улитки педальное происхождение, т. е. является дериватом мышцы ноги. Другой изученный ретрактор — ретрактор щупальца происходит из другой, колумеллярной мышцы, и характер иннервации здесь совершенно иной, чем в ноге или ретракторе пениса, хотя оба ретрактора очень сходны по характеру своего функционирования. Значение этих данных будет подробно рассматриваться в главе 6, а пока нужно перейти к главе 5, которая посвящена вопросу о родственных отношениях клеточных структур нервной системы виноградной улитки.
5. КЛЕТОЧНЫЕ ГОМОЛОГИИ В НЕРВНЫХ СИСТЕМАХ ГАСТРОПОД
5. 1. Критерии установления гомологии
Зная хотя бы отчасти состав клеточной мозаики в нервной системе виноградной улитки, мы можем сравнивать его с нейронной популяцией какого-нибудь другого изученного вида,- например, аплизии. Сравнение покажет, что в этих разных нервных системах имеются клетки со сходными наборами свойств.
Попытавшись проанализировать природу этого сходства, мы придем к выводу, что оно отнюдь не конвергентного характера: идентичными свойствами обладают нейроны одинакового происхождения — гомологичные нейроны.
Мысль о существовании отдалённых гомологий на уровне индивидуальных клеток возникла у автора этих строк в конце 60-х годов, и то, что она подтверждается, казалось совершенно поразительным. Помню, каким большим волнением было в то время думать и писать, что наша ППа1 не просто похожа на R15 аплизии, а это та же самая клетка, только сидящая в другой нервной системе! Но проходит совсем немного лет, и с этим свыкаешься, и уже без эмоций, лишь с удовлетворением читаешь о поразительном (честно-то говоря) факте, что эти две клетки, находящиеся в таких далёких нервных системах, дают идентичную картину белкового синтеза, непохожую на ту, которая характерна для других, соседних нейронов [162, 162а]. Так, думаешь, и должно быть: ведь нейроны гомологичные.
Читатель, знакомый с предметом, простит мне эту небольшую экскурсию за пределы делового стиля, потому что он сам в своей работе встречается с похожими вещами.
Итак, нас сейчас интересуют критерии гомологии.
Вопрос о критериях многократно пересматривался, и в настоящее время большинством эволюционистов приняты критерии гомологии, выдвинутые немецким морфологом Ремане. В отечественной литературе этому вопросу посвящён критический обзор М. С. Гилярова [13], из которого можно почерпнуть необходимые сведения о критериях Ремане. Выполняться должен один из трёх критериев. Критерий положения учитывает позицию структур в их отношении к другим сравнимым структурам. Критерий специального качества становится важным, когда позиции сравниваемых структур различны; при этом сходство должно наблюдаться по нескольким разным качественным признакам. Наконец, критерий непрерывности помогает гомологизировать несходные структуры, если между ними в сравнительном ряду имеются образования, отвечающие первым двум критериям.
Прилагая эти критерии к нервным клеткам, нужно учитывать некоторые особенности этих структур. При рассмотрении вопроса о гомологии клеток, относящихся к разным нервным системам, нельзя ограничиваться данными о положении тел нейронов; очень важно располагать также данными о клеточных отростках и их связях. Не исключено, что изменения положения нейронов, связанные с процессами ганглионизации, концентрации ганглиев и т. п., гораздо сильнее сказываются на позициях клеточных тел, чем на положении рабочих отростков. Это можно иллюстрировать рядом примеров, ограничимся ссылкой на собственные данные о катехоламиновых нейронах педального отдела нервной системы гастропод (5.3.4.). Учёт этого обстоятельства позволяет применять критерий положения при гомологизировании нервных клеток, тела которых в ходе эволюции сильно изменили свои позиции.
Далее, важно иметь в виду, что специфические нейроны часто меняют свою позицию не изолированно, а вместе с комплексом окружающих нейральных структур: так обычно происходит при концентрации ганглиев. Это обстоятельство также облегчает применение критерия положения.
Наконец, важно отметить, что каждый нейрон обладает не какой-то одной особенной чертой, а комплексом специфических характеристик — химических, ультраструктурных и физиологических. Это делает возможным использование критерия специального качества, особенно важного при установлении отдалённых гомологий между нервными клетками.
Сочетая разные критерии, можно с большой уверенностью прослеживать ряды гомологичных нервных клеток — от вида к виду, от семейства к семейству и дальше.
5. 2. Сравнительная анатомия о гомологии нервных органов у гастропод