Пятьсот двадцать головоломок - Дьюдени Генри Эрнест (книги читать бесплатно без регистрации TXT) 📗
182. У каждого из родителей было по 3 ребенка от первого брака, и.6 детей родилось от второго брака.
183. Нед Смит и его сестра Джейн получили по 3 яблока. Том и Кэт Брауны получили соответственно 8 и 4 яблока, Бил и Энн Джонсы — 3 и 1 яблоко, а Джэку и Мэри Робинсонам досталось 8 и 2 яблока. Всего было роздано 32 яблока.
184. Мать Мэри звали миссис Джонс. Покупки и затраты распределились следующим образом.
Среди дочерей:
Хильда купила 4 м за 16 центов,
Глэдис купила 6 м за 36 центов,
Нора купила 9 м за 81 цент,
Мэри купила 10 м за 1 доллар.
Среди матерей:
Миссис Смит купила 8 м за 64 цента,
миссис Браун купила 12 м за 1,44 доллара,
миссис Уайт купила 18 м за 3,24 доллара,
миссис Джонс купила 20 м за 4 доллара.
185. Чтобы найти число, представляющее собой одновременно и квадрат, и треугольное число, надо решить уравнение Пелля: 8 x 2+ 1 = y 2Последовательные значения для xравны 1, 6, 35 и т. д., а для yравны 3, 17, 99 и т. д. Ответом служит число 1225 (35 2), обладающее требуемыми свойствами.
188. Разумеется, можно найти несколько решений данной задачи, но, по-видимому, наименьшими числами будут:
При отыскании общего решения используется тот факт, что любое простое число вида 4 m+ 1 представляет собой сумму квадратов. Быть может, читателю захочется найти это решение.
187. Ответом служит число 2⅔. Чтобы найти его, требуется составить пропорцию: 5 : 4 = 3⅓ : 2⅔.
188. Ответ имеет вид
Данное число можно умножить на 4 и разделить затем на 5, просто перенеся 2 из начала в конец.
189. Следующие четыре числа, составленные из пяти нечетных цифр, в сумме дают 14: 11, 1, 1, 1.
190. 1) 8 111½; 2) 18⅔; 3) 7 и 1; 4) 1⅕; 5) 8¼: 6)
.191. У Джека было 11 голов скота, у Джима — 7 и у Дана — 21, то есть всего 39 голов скота.
192. «Галочки» можно расставить 9 864 100 способами.
193. Кубы всех чисел от 14 до 25 включительно (всего 12) в сумме дают 97 344 = 312 2. Следующим за наименьшим ответом будут пять кубов 25, 26, 27, 28 и 29, сумма которых равна 315 2.
194. 7 3= 343, 8 3= 512, 512 - 343 = 169 = 13 2.
195. 642 3= 264 609 288; 641 3= 263 374 721 и разность между кубами равна 1 234 567.
196. Ответом служит число 225 625 (квадраты чисел 15 и 25, выписанные подряд один за другим), равное квадрату 475.
197. Ответ: 482, 3362, 6242. Разность этой прогрессии равна 2880. Первое и второе числа в сумме дают 62 2, первое и третье — 82 2, а второе и третье — 98 2.
198. Если прибавить 125 к 100 и 125 к 164, то получатся числа 225 = 15 2и 289 = 17 2.
199. У офицера было 1975 солдат. Когда он образовал каре 44 × 44, то у него осталось 39 лишних солдат, а когда он попытался образовать каре 45 × 45, ему не хватило 50 человек.
200. Вообще мы можем взять числа вида 625 m 6и 2 × 625 m 6. Так, если мы возьмем m= 1, то получим 625 2+ 1250 2= 125 3и 625 3+ 1250 3= 46 875 2.
201. Молочник должен добавить ¼ л снятого молока.
202. Наименьшее число орехов равно 2179. Лучше всего сначала иметь дело только с первыми двумя случаями и выяснить, что 34 (или 34 плюс любое кратное 143) удовлетворяет условию для 11 и 13 обезьян. Затем следует найти наименьшее число такого вида, удовлетворяющее условию для 17 обезьян.
203. Число яблок у первого мальчика относится к числу яблок у второго мальчика и к числу яблок у третьего соответственно как 6 : 4 и 6 : 3. Сумма чисел 6, 4, 3 равна 13. Следовательно, мальчики получат
, и , или 78, 52 и 39 яблок.204. Двое работников должны напилить 3
м 3дров.205. В пяти пакетах содержится 27, 25, 18, 16, 14 орехов. Содержимое каждого пакета можно найти, вычитая из 100 общую сумму орехов в тех парах пакетов, куда не входит данный пакет.Так, в третьем пакете содержится 100 - (52 + 30) = 18 орехов.
206. Первоначально было 1021 орех. Томми получил 256, Бесси 192, Боб 144 и Джесси 108 орехов. Всего девочки получили 300, а мальчики 400 орехов. Тетушка Марта оставила себе 321 орех.
207. У торговки было 40 яблок. Том оставил ей 30, Боб 22 и Джим 12 яблок.
208. Нужно выдать покупателю четыре коробки по 17 и две по 16 фунтов, что и составит в точности 100 фунтов.
209. Алек может выполнить работу за 14
дня, Бил — за 17 дня и Кейзи — за 23 дня.210. За шестьдесят и сорок дней.
211. Получив остаток от деления на 3, умножьте его на 70, остаток от деления на 5 умножьте на 21 и остаток от деления на 7 — на 15. Сложите результаты, и вы получите либо задуманное число, либо число, отличающееся от задуманного на целое кратное 105. Так, если было задумано 79, то 1, умноженное на 70, плюс 4, умноженное на 21, плюс 2, умноженное на 15, даст 184. Вычтите 105, и вы получите 79 — задуманное число.
212. Всего было 15 пчел.
213. Дева назвала число 28. Трюк состоит в том, чтобы проделать весь процесс вычислений в обратную сторону: умножить 2 на 10, вычесть 8, возвести результат в квадрат и т. д. При этом, например, надо помнить, что увеличить произведение на ¾ означает взять от него
. Обратное действие состоит в том, что берется .214. Печатник должен купить 22 литеры: А, Б, В, Г, Д, Е, И, Й, К, Л, М, Н, О, П, Р, С, Т, У, Ф, Ь, Ю, Я.
215. В рое было 72 пчелы.
216. Наименьшее число мышей равно 7, причем возможны три случая:
1) 2 хорошо видят, 1 слепа только на правый глаз и 4 полностью слепы;
2) 1 хорошо видит, 1 слепа только на левый глаз, 2 слепы только на правый и 3 полностью слепы;
3) 2 слепы только на левый глаз, 3 только на правый и 2 полностью слепы.
217. Поскольку в зверинце содержалось два чудовища (четырехногая птица и шестиногий теленок), всего в нем было 12 зверей и 24 птицы.
218. В стаде было 1025 овец. Легко понять, что ни одна овца не была покалечена.
219. Доля Чарлза составляет 3456 овец. Вероятно, кое-кто из читателей вначале нашел долю Альфреда, а затем вычел из нее 25%, но такое решение, разумеется, неверно.
220. Номер такси 121.
221. Истекло 54 года арендного срока.
222. Всего в подразделении было 4550 человек. Сначала солдаты шли колонной в 70 шеренг по 65 человек в каждой; затем они перестроились в 5 шеренг по 910 солдат в каждой.