Генеалогия нейронов - Сахаров Дмитрий Антонович (книга бесплатный формат .TXT) 📗
4. 2. 4. Специфичность клеточных рецепторов
В 1961 г. Тауц и Гершенфельд обнаружили, что в ганглии моллюска одни нейроны отвечают на ацетилхолин деполяризацией и возбуждением, а другие — гиперполяризацией и торможением; было предложено различать две категории нейронов, D и Н [308]. Это открытие породило огромную литературу, и по мере детализации знании о реакциях нейронов на медиаторы росло число «фармакологических типов» нейронов. Работа на идентифицированных клетках дала возможность понять, что нейрон обладает определёнными, повторяющимися от препарата к препарату, рецепторными свойствами. По сложившейся традиции, говорят о «фармакологических характеристиках» нейронов, подразумевая, во-первых, знак ответа на тот или иной медиатор; во-вторых, ионный механизм этого ответа; и, в-третьих, отношение соответствующего рецептора к литикам и миметикам. Имеется ряд работ, выполненных на нейронах гастропод, которые дают широкое представление о типах ответов клеточных мембран на апплицируемые медиаторные вещества.
Ацетилхолин. До сих пор физиологами найдено пять способов действия ацетилхолина на поверхностную клеточную мембрану: 1) деполяризация повышением проницаемости для натрия; 2) деполяризация понижением проницаемости для калия; 3) гиперполяризация повышением проницаемости для калия; 4) гиперполяризация повышением проницаемости для хлора, при низкой внутриклеточной концентрации этого иона; 5) деполяризация повышением проницаемости для хлора, при высокой его внутриклеточной концентрации. Из пяти способов четыре представлены в нейронах моллюсков [212], исключение составляет лишь второй из перечисленных механизмов, постулированный для клеток мозга и симпатических ганглиев млекопитающих [224, 329]. Высказывается мнение, что в ганглиях моллюсков можно найти ещё два механизма: стимуляция и торможение ацетилхолином электрогенного насоса [212], но в этом отношении пока нет строгих экспериментальных фактов.
На виноградной улитке клеточные эффекты ацетилхолина исследовались нами на поверхностных нейронах всех ганглиев подглоточного комплекса. В этих опытах (и в других наших электрофизиологических экспериментах, о которых речь будет идти позже) применялась обычная методика регистрации трансмембранного потенциала капиллярным внутриклеточным микроэлектродом. Регистрирующий электрод мы, как правило, заполняли 2М цитратом калия (в специальных случаях, когда требовалось инъецировать в клетку ионы хлора, отводящий электрод заполняли 2,5М хлористым калием). Изолированное окологлоточное кольцо или часть его помещали в проточную камеру объемом 10 мл. Раствор Рингера для улитки имел следующий состав (в мМ): хлористый натрий — 80, хлористый калий — 4, хлористый кальций — 7, хлористый магний — 5, рН доводили до 7,4 с помощью Трис-хлорида. Трис использовали и для компенсации осмотичности раствора при удалении тех или иных катионов. Поляризацию клеточной мембраны осуществляли через отводящий электрод, используя мостовую схему, или через второй внутриклеточный электрод. Эффекты ацетилхолина только на раннем этапе исследования наблюдали в условиях внесения его в окружающий раствор, в основной части экспериментов применяли стандартную методику ионофоретической аппликации из подведенного к клетке капиллярного электрода.
Знак ответа нервной клетки на ацетилхолин (как и на другое медиаторное вещество) может в естественных условиях быть непостоянным вследствие того, что мембранный потенциал нейрона иногда меняется в широком диапазоне. Мы столкнулись с этой трудностью при изучении группы нейросекреторных клеток правого париетального ганглия: этим клеткам свойственно развивать иногда глубокую гиперполяризацию, на фоне которой эффект ацетилхолина, обычно гиперполяризующий и тормозящий активность, становится деполяризующим, хотя и не до уровня генерации [24, 280]. Результаты испытания медиаторных веществ можно стандартизировать при условии, что знак реакции оценивается при значении мембранного потенциала, пороговом для генерации потенциалов действия. Такое условие мы стремились выполнять в данном исследовании.
На рис. 6 суммированы результаты, касающиеся знака ответа на ацетилхолин нейронов, находящихся в разных ганглиях подглоточного комплекса. Данные, относящиеся к картированным индивидуальным нейронам, на этих схемах не отражены, они изложены в разделе 4.2.5. Рисунки дают представление о региональных особенностях ответов нейронов на ацетилхолин. Так, на вентральной поверхности педальных ганглиев и в той области правого париетального ганглия, где расположены крупные нейросекреторные клетки (группа D), ацетилхолин почти без исключений вызывает гиперполяризацию. Противоположные, деполяризующие эффекты наблюдаются, как правило, на дорзальной поверхности висцерального ганглия в зоне, занятой преимущественно нейронами группы F. Несколько более пёстрые результаты, полученные в аналогичных условиях голландскими авторами, которые изучали ответы нейронов, расположенных на дорзальной поверхности комплекса [346], объясняются, по всей вероятности, тем, что этими авторами при оценке знака ответа не выдерживалось отмеченное выше стандартизирующее условие.
Рис. 6. Знак ответа на ацетилхолин со стороны нейронов, расположенных в разных участках ЦНС виноградной улитки.
А — ганглии висцеральной дуги; Б, В — педальные ганглии с дорзальной и вентральной стороны. На схемах суммированы результаты разных опытов, но данные, полученные на индивидуально идентифицируемых клетках, в рисунок не включены и сообщаются в тексте (то же относится к рис. 7). Ионофоретическая аппликация. Заштрихованный кружок указывает позицию клетки, деполяризуемой медиатором, чёрный кружок — гиперполяризуемой клетки.
Об особом, «двойном» действии ацетилхолина на некоторые нейроны будет сказано ниже, при описании группы G (4.2.5.).
Ионные механизмы эффектов ацетилхолина были нами исследованы в нескольких случаях. Деполяризующие эффекты оказались натрийзависимыми и гиперполяризующие — зависимыми от ионов хлора [24]. Пока не обнаруживались другие типы эффектов, найденные на нейронах других моллюсков.
В литературе имеются данные о том, что холинорецепторы, ответственные за разные ионные эффекты ацетилхолина на нейроны гастропод, имеют разное строение, что выражается их отношением к холинолитикам и холиномиметикам [208, 232].
Первичные катехоламины. Признано, что дофамин, подобно ацетилхолину, выполняет медиаторные функции в нервной системе гастропод. Как правило, чувствительные к дофамину нейроны моллюсков, в частности аплизии, отвечают на него гиперполяризацией, но бывают и противоположные эффекты [83]. Глайзнер, по-видимому, впервые нашел у садовой улитки клетку, реагирующую на дофамин деполяризацией [170]. У виноградной улитки нам удалось исследовать в этом отношении только поверхностные нейроны задне-медиальной области правого париетального ганглия (дорзальная клеточная кора). В этой области большинство клеток, в частности нейроны ППа1, ППа2 и клетки группы D, гиперполяризуются и тормозятся дофамином, но имеется также несколько небольших клеток, отвечающих на дофамин деполяризацией.
Чувствительностью к норадреналину обладают, как правило, те же нейроны садовой улитки, которые реагируют на дофамин [170]; для виноградной улитки собственными данными по действию норадреналина мы не располагаем.
Серотонин. В литературе детальные данные о клеточных эффектах серотонина имеются только для садовой улитки Helix (Cryptomphallus) aspersa. Сначала Гершенфельду и Стефани удалось заметить только возбуждающие эффекты, которые развивались с большой латентностью, из чего авторы сделали вывод, что серотонин действует на расстоянии от тела нейрона [168]. Позже Глайзнер сообщил, что у этого вида имеются также нейроны, отвечающие на серотонин торможением [170], а Гершенфельд нашел, что тормозные эффекты имеют разную ионную и рецепторную природу в правом и левом париетальном ганглиях [165]. Все эти исследования проводились на дорзальной поверхности ганглиев подглоточного комплекса.