Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗

Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

 

Большая Советская Энциклопедия (СТ) - i-images-109747038.png

  Решение

Большая Советская Энциклопедия (СТ) - i-images-146848140.png
 называется бейесовским (относительно заданного априорного распределения n на множестве
Большая Советская Энциклопедия (СТ) - i-images-140549091.png
), если для всех решающих правил d

Большая Советская Энциклопедия (СТ) - i-images-147233177.png
,

где

Большая Советская Энциклопедия (СТ) - i-images-110850947.png

  между минимаксными и бейесовскими решениями существует тесная связь, заключающаяся в том, что в весьма широких предположениях о данных задачи минимаксное решение является бейесовским относительно «наименее благоприятного» априорного распределения p.

  Лит.: Вальд А., Статистические решающие функции, в сборнике: Позиционные игры, М., 1967: Леман Э., Проверка статистических гипотез, пер. с англ., М., 1964.

  А. Н. Ширяев.

Статистическое моделирование

Статисти'ческое модели'рование, численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели. Например, требуется рассчитать потоки тепла в нагреваемой тонкой металлической пластине, на краях которой поддерживается нулевая температура. Распределение тепла описывается тем же уравнением, что и расплывание пятна краски в слое жидкости (см. Теплопроводность , Диффузия ). Поэтому моделируют плоское броуновское движение частиц «краски» по пластине, следя за их положениями в моменты k t, k = 0, 1, 2,... Приближённо принимают, что за малый интервал t частица перемещается на шаг h равновероятно во всех направлениях. Каждый раз направление выбирается случайным образом, независимо от всего предыдущего. Соотношение между t и h определяется коэффициентом теплопроводности. Движение начинается в источнике тепла и кончается при первом достижении края (наблюдается налипание «краски» на край). Поток Q (C) тепла через участок С границы измеряется количеством налипшей краски. При общем количестве N частиц согласно больших чисел закону такая оценка даёт случайную относительную ошибку порядка

Большая Советская Энциклопедия (СТ) - i-images-190586174.png
 (и систематическую ошибку порядка h из-за дискретности выбранной модели).

  Искомую величину представляют математическим ожиданием числовой функции f от случайного исхода w явления:

Большая Советская Энциклопедия (СТ) - i-images-116580236.png
, т. е. интегралом по вероятностной мере Р (см. Мера множества ). На оценку
Большая Советская Энциклопедия (СТ) - i-images-172847547.png
, где w1 ,..., wN -смоделированные исходы, можно смотреть как на квадратурную формулу для указанного интеграла со случайными узлами wk и случайной погрешностью RN обычно принимают
Большая Советская Энциклопедия (СТ) - i-images-105523814.png
, считая большую погрешность пренебрежимо маловероятной; дисперсия Df может быть оценена в ходе наблюдений (см. Ошибок теория ).

  В разобранном выше примере f (w)= 1, когда траектория кончается на С; иначе f (w) = 0. Дисперсия

Большая Советская Энциклопедия (СТ) - i-images-193837847.png
. Интеграл берётся по пространству ломаных со звеньями постоянной длины; он может быть выражен через кратные интегралы.

  Проведение каждого «эксперимента» распадается на две части: «розыгрыш» случайного исхода w и последующее вычисление функции f (w). Когда пространство всех исходов и вероятностная мера Р слишком сложны, розыгрыш проводится последовательно в несколько этапов (см. пример). Случайный выбор на каждом этапе проводится с помощью случайных чисел, например генерируемых каким-либо физическим датчиком; употребительна также их арифметическая имитация — псевдослучайные числа (см. Случайные и псевдослучайные числа ). Аналогичные процедуры случайного выбора используются в математической статистике и теории игр.

  С. м. широко применяется для решения на ЭВМ интегральных уравнений, например при исследовании больших систем . Они удобны своей универсальностью, как правило, не требуют большого объёма памяти. Недостаток — большие случайные погрешности, слишком медленно убывающие при увеличении числа экспериментов. Поэтому разработаны приёмы преобразования моделей, позволяющие понижать разброс наблюдаемых величин и объём модельного эксперимента.

  Лит.: Метод статистических испытаний (Метод Монте-Карло), М., 1962; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971.

  Н. Н. Ченцов.

Статистическое наблюдение

Статисти'ческое наблюде'ние, см. Выборочное наблюдение , Наблюдение сплошное .

Статистическое оценивание

Статисти'ческое оце'нивание, совокупность способов, употребляемых в математической статистике для приближённого определения неизвестных распределений вероятностей (или каких-либо их характеристик) по результатам наблюдений. В наиболее распространённом случае независимых наблюдений их результаты образуют последовательность

  X1 , X2 ,..., Xn ,... (1)

независимых случайных величин (или векторов), имеющих одно и то же (неизвестное) распределение вероятностей с функцией распределения F (x ). Часто предполагают, что функция F (x ) зависит неизвестным образом от одного или нескольких параметров и определению подлежат лишь значения самих этих параметров [например, значительная часть теории, особенно в многомерном случае, развита в предположении, что неизвестное распределение является нормальным распределением , у которого все параметры или какая-либо часть их неизвестны (см. Статистический анализ многомерный )]. Два основных вида С. о. — т. н. точечное оценивание и оценивание с помощью доверительных границ . В первом случае в качестве приближённого значения для неизвестной характеристики выбирают какую-либо одну функцию от результатов наблюдений, во втором — указывают интервал значений, с высокой вероятностью «накрывающий» неизвестное значение этой характеристики. В более общих случаях интервалы, образуемые доверительными границами (доверительные интервалы), заменяются более сложными доверительными множествами.

  О С. о. функции распределения F (x ) см. Непараметрические методы в математической статистике; о С. о. параметров см. Статистические оценки .

  Разработаны также методы С. о. и для случая, когда результаты наблюдений (1) зависимы, и для случая, когда индекс n заменяется непрерывно меняющимся аргументом t, т. е. для случайных процессов . В частности, широко используется С. о. таких характеристик случайных процессов, как корреляционная функция и спектральная функция. В связи с задачами регрессионного анализа был развит новый метод С. о. — стохастическая аппроксимация . При классификации и сравнении способов С. о. исходят из ряда принципов (таких, как состоятельность, несмещенность, инвариантность и др.), которые в их наиболее общей форме рассматривают в Статистических решений теории .

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (СТ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (СТ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*