Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗

Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Статистический вес

Статисти'ческий вес, в квантовой механике и квантовой статистике — число различных квантовых состояний с данной энергией, т. е. кратность состояния. Если энергия принимает непрерывный ряд значений, под С. в. понимают число состояний в данном интервале энергий. В классической статистике С. в. называют величину элемента фазового объёма системы. См. Статистическая физика .

Статистический институт

Статисти'ческий институ'т международный, занимается развитием и усовершенствованием статистических методов и их применением в различных областях знаний. Основан в 1885. Организационная работа С. и. выполняется Постоянным бюро, которое находится в Гааге. В составе С. и. (середина 70-х гг.) свыше 700 действительных членов более чем из 70 стран (в т. ч. из СССР и др. социалистических стран), специалисты в области социально-экономической и математической статистики, а также руководители национальных статистических учреждений и организаций. Каждые 2 года С. и. проводит сессии, на которых заслушиваются и обсуждаются научные сообщения по проблемам различных отраслей статистики. Первая сессия состоялась в Риме в 1887, 40-я — в 1975 в Варшаве. Материалы сессий С. и. печатаются в «Бюллетенях института». Статьи по отдельным проблемам статистики (в основном математической) и текущая информация о научной жизни публикуются в журнале «Международное статистическое обозрение» («International statistical review», с 1933). До 1-й мировой войны 1914—18 С. и. был центром, международной статистики, занимался сбором и обработкой статистических данных отдельных стран, готовил рекомендации по сопоставимости данных. В 1919—33 он осуществлял эту деятельность параллельно с органами Лиги Наций . С созданием статистического аппарата ООН С. и. полностью переключился на вопросы статистической теории и методологии. Институт готовит кадры статистиков для развивающихся стран. В 70-е гг. сформировались 3 ассоциации как автономные секции С. и.: Международная ассоциация по применению статистики в физических науках, Международная ассоциация муниципальных статистиков, Международная ассоциация специалистов по выборочному методу.

  Лит.: Рябушкин Т., Международная статистика, М., 1965.

  Т. В. Рябушкин.

Статистический оператор

Статисти'ческий опера'тор, матрица плотности, оператор, с помощью которого можно вычислить среднее значение любой физической величины в квантовой статистической физике и, в частности, в квантовой механике . С. о. описывает состояние системы, не основанное на полном (в смысле квантовой механики) наборе данных о системе (смесь состояний ).

Статистических испытаний метод

Статисти'ческих испыта'ний ме'тод , метод вычислительной и прикладной математики, основанный на моделировании случайных величин и построении статистических оценок для искомых величин; то же, что Монте-Карло метод . Принято считать, что С. и. м. возник в 1944, когда в связи с работами по созданию атомных реакторов американские учёные Дж. фон Нейман и С. Улам начали широко применять аппарат теории вероятностей для решения прикладных задач с помощью ЭВМ. Первоначально С. и. м. использовался главным образом для решения сложных задач теории переноса излучения и нейтронной физики, где традиционные численные методы оказались мало пригодными. Затем его влияние распространилось на больший класс задач статистической физики, очень разных по своему содержанию. С. и. м. применяется для решения задач теории игр, теории массового обслуживания и математической экономики, задач теории передачи сообщений при наличии помех и т.д. Для решения детерминированной задачи по С. и. м. прежде всего строят вероятностную модель, представляют искомую величину, например многомерный интеграл, в виде математического ожидания функционала от случайного процесса, который затем моделируется на ЭВМ. Хорошо известны вероятностные модели для вычисления интегралов, для решения интегральных уравнений 2-го рода, для решения систем линейных алгебраических уравнений, для решения краевых задач для эллиптических уравнений, для оценки собственных значений линейных операторов и т.д. Выбором вероятностной модели можно распорядиться для получения оценки с малой погрешностью. Особую роль в различных приложениях С. и. м. играет моделирование случайных величин с заданными распределениями. Как правило, такое моделирование осуществляется путём преобразования одного или нескольких независимых значений случайного числа a, распределённого равномерно в интервале (0,1). Последовательности «выборочных» значений a обычно получают на ЭВМ с помощью теоретико-числовых алгоритмов, среди которых наибольшее распространение получил «метод вычетов». Такие числа называются «псевдослучайными», они проверяются статистическими тестами и решением типовых задач. Если в расчёте по С. и. м. моделируются случайные величины, определяемые реальным содержанием явления, то расчёт представляет собой процесс «прямого моделирования». Такой расчёт неэффективен, если изучению подлежат редкие события, т.к. реальный процесс содержит о них мало информации. Эта неэффективность обычно проявляется в слишком большой величине вероятностной погрешности (дисперсии) случайных оценок искомых величин. Разработано много способов уменьшения дисперсии указанных оценок в рамках С. и. м. Почти все они основаны на модификации моделирования с помощью информации о «функции ценности» значений случайных величин относительно вычисляемых величин. С. и. м. оказал и продолжает оказывать существенное влияние на развитие др. методов вычислительной математики (например, на развитие методов численного интегрирования) и при решении многих задач успешно сочетается с др. вычислительными методами и дополняет их. Более специальные математические вопросы, связанные с С. и. м., см. в ст. Статистическое моделирование .

  Лит.: Метод Монте-Карло в проблеме переноса излучений, М., 1967; Метод статистических испытаний (Метод Монте-Карло), М., 1962; Решение прямых и некоторых обратных задач атмосферной оптики методом Монте-Карло, Новосиб., 1968; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971; Михайлов Г. А., Некоторые вопросы теории методов Монте-Карло, Новосиб., 1974.

  Г. И. Марчук.

Статистических решений теория

Статисти'ческих реше'ний тео'рия, часть математической статистики и игр теории , позволяющая единым образом охватить такие разнообразные задачи, как статистическая проверка гипотез , построение статистических оценок параметров и доверительных границ для них, планирование эксперимента и др. В основе С. р. т. лежит предположение, что распределение вероятностей F наблюдаемой случайной величины XF принадлежит некоторому априори данному множеству

Большая Советская Энциклопедия (СТ) - i-images-119073080.png
. Основная задача С. р. т. состоит в отыскании наилучшего статистического решения или решающего правила (функции) d = d (x ), позволяющего по результатам наблюдений х над Х судить об истинном (но неизвестном) распределении F. Для сравнения достоинств различных решающих правил вводят в рассмотрение функцию потерь W [F, d (x )], представляющую убыток от принятия решения d (x ) (из заданного множества D ), когда истинное распределение есть F. Естественно было бы считать решающее правило d* = d* (x ) наилучшим, если средний риск r (F, d* ) =MF W [F, d (X )] (MF усреднение по распределению F ) не превышает r (F, d ) для любого F Î
Большая Советская Энциклопедия (СТ) - i-images-143554447.png
 и любого решающего правила d = d (x ). Однако такое «равномерно наилучшее» решающее правило в большинстве задач отсутствует, в связи с чем наибольший интерес в С. р. т. представляет отыскание т. н. минимаксных и бейесовских решений. Решение
Большая Советская Энциклопедия (СТ) - i-images-116797776.png
 называется минимаксным, если

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (СТ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (СТ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*