Большая Советская Энциклопедия (АН) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно без регистрации .txt) 📗
Определение пригодности того или иного продукта для нужд человека имеет столь же древнюю историю, как и само его производство. Первоначально такое определение имело целью установление причин несоответствия получаемых свойств продуктов желаемым или необходимым. Это относилось к продуктам питания — таким, как хлеб, пиво, вино и др., для испытания которых использовались вкус, запах, цвет (эти методы испытания, называемые органолептическими, применяются и в современной пищевой промышленности). Сырьё и продукты древней металлургии — руды, металлы и сплавы, которые применяли для изготовления орудий производства (медь, бронза, железо) или для украшения и товарообмена (золото, серебро), испытывались по их плотности, механическим свойствам посредством пробных плавок. Совокупностью подобных методов испытания благородных сплавов пользуются и до сих пор в пробирном анализе. Определялась доброкачественность красителей, керамических изделий, мыла, кожи, тканей, стекла, лекарственных препаратов. В процессе такого анализа стали различаться отдельные металлы (золото, серебро, медь, олово, железо), щёлочи, кислоты.
Методы А. х. имели исключительное значение в установлении основных законов химии (см. Постоянства состава закон, Кратных отношений закон) уточнении понятия о химическом элементе и др.
В алхимический период развития химии (см. Алхимия), характеризовавшийся развитием экспериментальных работ, увеличилось число различаемых металлов, кислот, щелочей, возникло понятие о соли, сере как горючем веществе и т. д. В этот же период были изобретены многие приборы для химических исследований, применено взвешивание исследуемых и используемых веществ (14—16 вв.).
Главное же значение алхимического периода для будущего А. х. заключалось в том, что были открыты чисто химические методы различения отдельных веществ; так, в 13 в. было обнаружено, что «крепкая водка» (азотная кислота) растворяет серебро, но не растворяет золото, а «царская водка» (смесь азотной и соляной кислот) растворяет и золото. Алхимики положили начало химическим определениям; до этого для различения веществ пользовались их физическими свойствами.
В период иатрохимии (16—17 вв.) ещё более увеличился удельный вес химических методов исследования, особенно методов «мокрого» качественного исследования веществ, переводимых в растворы: так, серебро и соляная кислота распознавались по реакции образования ими осадка в азотнокислой среде; пользовались реакциями с образованием окрашенных продуктов, например железа с дубильными веществами.
Начало научному подходу к химическому анализу положил английский учёный Р. Бойль (17 в.), когда он, отделив химию от алхимии и медицины и став на почву химического атомизма, ввёл понятие химического элемента как неразложимой далее составной части различных веществ. Согласно Бойлю, предметом химии является изучение этих элементов и способов их соединения для образования химических соединений и смесей. Разложение веществ на элементы Бойль и назвал «анализом». Весь период алхимии и иатрохимии был в значительной степени периодом синтетической химии; были получены многие неорганические и некоторые органические соединения. Но т. к. синтез был тесно связан с анализом, ведущим направлением развития химии в это время был именно анализ. Новые вещества получались в процессе всё более утончённого разложения природных продуктов.
Т. о., почти до середины 19 в. химия развивалась преимущественно как А. х.; усилия химиков были направлены на разработку методов определения качественно различных начал (элементов), на установление количественных законов их взаимодействия.
Большое значение в химическом анализе имела дифференциация газов, считавшихся ранее одним веществом; начало этим исследованиям было положено голландским учёным ван Гельмонтом (17 в.), открывшим углекислый газ. Наибольших успехов в этих исследованиях достигли Дж. Пристли, К. В. Шееле, А. Л. Лавуазье (18 в.). Экспериментальная химия получила твёрдую основу в установленном Лавуазье законе сохранения массы веществ при химических операциях (1789). Правда, ещё ранее этот закон в более общей форме высказал М. В. Ломоносов (1758), а шведский учёный Т. А. Бергман пользовался сохранением массы веществ для целей химического анализа. Именно Бергману принадлежит заслуга создания систематического хода качественного анализа, при котором переведённые в растворённое состояние исследуемые вещества затем разделяются на группы с помощью реакций осаждения реагентами и далее дробятся на ещё меньшие группы вплоть до возможности определения каждого элемента в отдельности. В качестве основных групповых реактивов Бергман предложил сероводород и щёлочи, которыми пользуются и до сих пор. Он также систематизировал качественный анализ «сухим путём», посредством нагревания веществ, которое приводит к образованию «перлов» и налётов различного цвета.
Дальнейшее совершенствование систематического качественного анализа было выполнено французскими химиками Л. Вокленом и Л. Ж. Тенаром, немецкими химиками Г. Розе и К. Р. Фрезениусом, русским химиком Н. А. Меншуткиным. В 20—30-е гг. 20 в. советский химик Н. А. Тананаев, основываясь на значительно расширившемся наборе химических реакций, предложил дробный метод качественного анализа, при котором отпадает необходимость систематического хода анализа, разделения на группы и применения сероводорода.
Количественный анализ первоначально основывался на реакциях осаждения определяемых элементов в виде малорастворимых соединений, массу которых далее взвешивали. Этот весовой (или гравиметрический) метод анализа также значительно усовершенствовался со времён Бергмана, главным образом за счёт улучшения весов и техники взвешивания и использования различных реактивов, в частности органических, образующих наименее растворимые соединения. В 1-й четверти 19 в. французский учёный Ж. Л. Гей-Люссак предложил объёмный метод количественного анализа (волюмометрический), в котором вместо взвешивания измеряют объёмы растворов взаимодействующих веществ. Этот метод, называемый также методом титрования или титриметрическим, до сих пор является основным методом количественного анализа. Он значительно расширился как за счёт увеличения числа используемых в нём химических реакций (реакции осаждения, нейтрализации, комплексообразования, окисления-восстановления), так и за счёт использования множества индикаторов (веществ, указывающих изменениями своего цвета на окончание реакции между взаимодействующими растворами) и др. средств индикации (посредством определения различных физических свойств растворов, например электропроводности или коэффициента преломления).
Анализ органических веществ, содержащих в качестве основных элементов углерод и водород, посредством сожжения и определения продуктов сгорания — углекислого газа и воды — впервые был проведён Лавуазье. Далее он был улучшен Ж. Л. Гей-Люссаком и Л. Ж. Тенаром и Ю. Либихом. В 1911 австрийский химик Ф. Прегль разработал технику микроанализа органических соединений, для проведения которого достаточно нескольких мг исходного вещества. Ввиду сложного построения молекул органических веществ, больших их размеров (полимеры), ярко выраженной изомерии органический анализ включает в себя не только элементный анализ — определение относительных количеств отдельных элементов в молекуле, но и функциональный — определение природы и количества отдельных характерных атомных группировок в молекуле. Функциональный анализ основан на характерных химических реакциях и физических свойствах изучаемых соединений.
Почти до середины 20 в. анализ органических веществ, в силу своей специфичности, развивался своими, отличными от неорганического анализа путями и в учебных курсах не включался в А. х. Анализ органических веществ рассматривался как часть органической химии. Но затем, по мере возникновения новых, главным образом физических, методов анализа, широкого применения органических реактивов в неорганическом анализе обе эти ветви А. х. стали сближаться и ныне представляют единую общую научную и учебную дисциплину.