Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (АН) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно без регистрации .txt) 📗

Большая Советская Энциклопедия (АН) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно без регистрации .txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (АН) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно без регистрации .txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Пусть на плоскости p с данной декартовой прямоугольной системой координат Оху задана некоторая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии L относительно системы Оху как соотношения вида F(x,y) = 0, которому удовлетворяют координаты х и у любой точки M, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Если, например, линия L является окружностью радиуса R с центром в начале координат O, то уравнение x2+ y2 — R2 = будет уравнением рассматриваемой окружности, в чём можно убедиться, обратившись к рис. 2. Если точка М лежит на окружности, то по теореме Пифагора для треугольника OMMx получается x2 + y2 R2 = 0. Если же точка не лежит на окружности, то, очевидно, x2 + y2R2¹ 0. Итак, линии L на плоскости можно сопоставить её уравнение F(x,y) = 0 относительно системы координат Оху.

  Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения F(x,y) = 0 этой линии. Например, применим метод координат для выяснения числа точек пересечения окружности С радиуса R и данной прямой линии В  (рис. 3). Пусть начало системы координат Оху находится в центре окружности, а ось Ox направлена перпендикулярно прямой В. Так как прямая В перпендикулярна оси Ox, то абсцисса любой точки этой прямой равна некоторой постоянной a. Т. о., уравнение прямой В имеет вид x — a = 0. Координаты (x, y) точки пересечения окружности С (ур-ние которой имеет вид x2 + y2 R2 = 0) и прямой В удовлетворяют одновременно уравнениям

  x2 + y2 - R2 = 0, х - а = 0, (1)

то есть являются решением системы (1). Следовательно, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы (1). Решая эту систему, получают х = a, у = ± R2 a2. Итак, окружность и прямая могут пересекаться в двух точках (R2 > a2) (этот случай изображен на рис. 3), могут иметь одну общую точку (R2 = a2) (в этом случае прямая В касается окружности C) и не иметь общих точек (R2 < a2) (в этом случае прямая В лежит вне окружности C).

  В А. г. на плоскости подробно изучаются геометрические свойства эллипса, гиперболы и параболы, представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). Эти линии часто встречаются во многих задачах естествознания и техники. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий; в инженерном деле для конструирования прожекторов, антенн и телескопов пользуются важным оптическим свойством параболы, заключающимся в том, что лучи света, исходящие из определённой точки (фокуса параболы), после отражения от параболы образуют параллельный пучок.

  В А. г. на плоскости систематически исследуются т. н. алгебраические линии первого и второго порядков (эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями первой и второй степени). Линии первого порядка суть прямые, и обратно, каждая прямая определяется алгебраическим уравнением первой степени Ax + By + С = 0. Линии второго порядка определяются уравнениями вида Ax2 + Вху + Су2 + Dx + Еу + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Можно доказать, что таким способом уравнение любой вещественной линии второго порядка может быть приведено к одному из следующих простейших видов:

 

Большая Советская Энциклопедия (АН) - i-images-120015234.png

  Первое из этих уравнений определяет эллипс, второе — гиперболу, третье — параболу, а последние два — пару прямых (пересекающихся, параллельных или слившихся).

  В А. г. в пространстве также пользуются методом координат. При этом декартовы прямоугольные координаты .x, у и z (абсцисса, ордината и апликата) точки М вводятся в полной аналогии с плоским случаем (рис. 4). Каждой поверхности S в пространстве можно сопоставить её уравнение F (x, y, z) =0 относительно системы координат Oxyz. (Так, например, уравнение сферы радиуса R с центром в начале координат имеет вид x2 + y2 + z2R2 = 0.) При этом геометрические свойства поверхности S выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности. Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S1. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 — уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую L в пространстве можно рассматривать как линию пересечения двух плоскостей. Так как плоскость в пространстве определяется уравнением вида Ax + By + Cz + D = 0, то пара уравнений такого вида, рассматриваемая совместно, представляет собой уравнение прямой L. Т. о., метод координат может применяться и для исследования линий в пространстве. В A. г. в пространстве систематически исследуются т. н. алгебраические поверхности первого и второго порядков. Выясняется, что алгебраическими поверхностями первого порядка являются лишь плоскости. Поверхности второго порядка определяются уравнениями вида:

  Ax2 + By2 + Cz2+ Dxy + Eyz + Fxz + Gx + Ну + Mz + N = 0.

  Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Важнейшими вещественными поверхностями второго порядка являются эллипсоиды, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический параболоиды. Эти поверхности в специально выбранных декартовых прямоугольных системах координат имеют следующие уравнения:

 

Большая Советская Энциклопедия (АН) - i-images-104607110.png

 

Большая Советская Энциклопедия (АН) - i-images-104048228.png

 

Большая Советская Энциклопедия (АН) - i-images-100301330.png

 

Большая Советская Энциклопедия (АН) - i-images-186677633.png

 

Большая Советская Энциклопедия (АН) - i-images-168326643.png

  Перечисленные важнейшие поверхности второго порядка часто встречаются в различных вопросах механики, физики твёрдого тела, теоретической физике и инженерном деле. Так, при изучении напряжений, возникающих в твёрдом теле, пользуются понятием т. н: эллипсоид напряжений. В различных инженерных сооружениях применяются конструкции в форме гиперболоидов и параболоидов.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (АН) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (АН), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*