Mybrary.info
mybrary.info » Книги » Научно-образовательная » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей

Тут можно читать бесплатно Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_140.png

Рисунок 18.4. Первые 269 значений t, где 1/2 + ti — нетривиальные нули дзета-функции.

При сравнении этих рисунков надо кое-что принять во внимание. Нулям дзета-функции на рисунке 18.4 требуется некоторое время для «разгона», и в соответствии с принципом, описанным в главе 13.viii, они группируются плотнее в более высоких областях вдоль критической прямой. Кроме того, собственные значения на рисунке 18.2 расположены несколько более свободно в начале и, соответственно, несколько более тесно в середине. Оба эффекта можно уменьшить, если взять большее количество нулей для большей матрицы, а также использовать нормировку (см. ниже). Даже с учетом этих искажений на основе приведенных рисунков довольно правдоподобными представляются следующие выводы.

• Ни нули дзета-функции, ни собственные значения не похожи на случайным образом разбросанные точки.

• Нули дзета-функции и собственные значения ведут себя похожим образом.

• В частности, и для нулей дзета-функции, и для собственных значений наблюдается эффект отталкивания.

IV.

Статья Монтгомери об интервалах между нулями дзета-функции была опубликована в журнале Американского математического общества в 1973 году. Она начинается словами «На протяжении данной статьи мы принимаем справедливость Гипотезы Римана (ГР)…». В этом нет ничего особенного. К 1973 году множество математических статей состояли из теорем, в которых предполагалась справедливость Гипотезы. [170] На сегодняшний день число их выросло еще больше, и если ГР (как отныне я буду ее именовать, следуя Монтгомери и всем другим современным исследователям) окажется неверной, то вся эта структура обвалится. Правда если контрпримеров окажется немного, значительную часть удастся спасти.

В работе Монтгомери 1973 года содержатся два результата. Первый — это теорема об общих статистических свойствах интервалов между нулями дзета-функции. В этой теореме предполагается справедливость ГР. Второй результат — гипотеза. Она утверждает, что парная корреляционная функция для этих интервалов именно такова, как Монтгомери описал ее в разговоре с Дайсоном. Важно понимать, что это гипотеза. Монтгомери не смог ее доказать даже в предположении о справедливости ГР. И никому другому тоже не удалось этого доказать.

Большая часть свойств нулей дзета-функции Римана, о которых пишут или рассказывают, как и большая часть идей, возникших за последние 30 лет, подобным же образом носят гипотетический характер. В этой области науки наблюдается явный дефицит твердых доказательств. Отчасти это вызвано тем, что после того, как Монтгомери выявил связь между нулями дзета-функции и собственными значениями, исследованиями ГР занялось много физиков и прикладных математиков. Сэр Майкл Берри [171] любит по этому поводу цитировать лауреата Нобелевской премии по физике Ричарда Фейнмана: «Известного куда больше, чем удается доказать». Отчасти же это происходит потому, что ГР представляет собой очень, очень упрямую проблему. ГР посвящено такое грандиозное количество литературы, что приходится все время напоминать себе, что на самом деле о нулях дзета-функции лишь очень мало известно наверняка и даже при всем всплеске интереса в течение нескольких последних лет математически неопровержимые результаты по-прежнему появляются лишь изредка, через длительные интервалы времени.

V.

Институт высших исследований в Принстоне, Нью-Джерси, находится всего в 32 милях от исследовательского центра Белловских лабораторий компании AT&T в Мюррей-Хилл. В 1978 году Хью Монтгомери читал в Принстоне лекции по теме, которая в то время называлась «гипотеза Монтгомери о парных корреляциях». Среди присутствовавших был молодой исследователь Эндрю Одлыжко, работавший в одном из отделов AT&T. Как раз в тот момент они приобрели суперкомпьютер Cray-1. Исследователи с воодушевлением строили планы запуска на нем своих программ и готовились к знакомству с теми алгоритмами, которые отвечали его архитектуре.

Размышляя по поводу лекции Монтгомери, Одлыжко рассуждал следующим образом. Гипотеза Монтгомери утверждает, что интервалы между нулями дзета-функции подчиняются некоторому статистическому закону. Этот закон возникает также при исследовании определенного семейства квантовых динамических систем, которые отвечают модели ГУА. Статистические свойства этого семейства были предметом интенсивного изучения в течение ряда лет. Однако статистические свойства нулей дзета-функции исследовались совсем мало. Пользу могло бы принести восстановление баланса — т.е. исследование статистических свойств нулей дзета-функции.

К этому Эндрю Одлыжко и приступил. Используя в качестве платформы для вычислений свободные процессорные мощности суперкомпьютера Cray в Белловских лабораториях [172] (ограниченные, однако, пятичасовым интервалом для каждого этапа вычислений), он с высокой точностью (около 8 десятичных знаков) получил первые 100 000 нетривиальных нулей дзета-функции Римана, исходя из формулы Римана-Зигеля. Далее, чтобы составить какое-то представление о происходящем много выше по критической прямой, он получил еще 100 000 нулей, начиная с 1000 000 000 001-го. Затем он прогнал эти два множества нулей через разнообразные статистические тесты, чтобы сравнить их с собственными значениями матриц, представляющих ГУА-операторы. Результаты этой работы были опубликованы в 1987 году в знаменитой статье, озаглавленной «О распределении интервалов между нулями дзета-функции».

Результаты оказались не полностью убедительными. Как сам Одлыжко весьма деликатно выразился в своей статье, «все полученные к настоящему моменту данные довольно неплохо согласуются с предсказаниями модели ГУА». Получилось несколько больше малых интервалов, чем это предсказывала модель ГУА. Тем не менее результаты Одлыжко произвели достаточное впечатление, чтобы привлечь внимание исследователей из нескольких различных областей. Дальнейшая работа позволила прояснить ситуацию с несоответствиями, отмеченными в статье 1987 года, и «гипотеза Монтгомери о парных корреляциях» стала законом Монтгомери-Одлыжко. [173]

Закон Монтгомери-Одлыжко

Распределение интервалов между последовательными нетривиальными нулями дзета-функции Римана (в правильной нормировке) статистически тождественно распределению собственных значений ГУА-оператора.

О природе полученных Одлыжко результатов я могу рассказать лишь вкратце. С этой целью я воспроизвел их на своем персональном компьютере, используя список нулей, который Одлыжко любезно разместил на своем веб-сайте. [174] Чтобы избежать всяких аномалий, связанных с малыми значениями, я взял нули от 90 001-го до 100 000-го, если считать вверх по критической прямой от 1/2. Это составляет 10 000 нулей — вполне достаточно, чтобы извлечь из них некоторый статистический смысл. Нуль с номером 90 001 расположен в точке 1/2 + 68 194,3528i, а 100 000-й нуль — в точке 1/2 + 74 920,8275i (если округлять до 4 знаков после запятой). Итак, изучим статистические свойства последовательности из 10 000 вещественных чисел, которая начинается числом 68 194,3528, а заканчивается числом 74 920,8275.

Мы говорили в главе 13.viii, что по мере движения вверх по критической прямой нули делаются в среднем ближе друг к другу и поэтому необходимо внести поправку — растянуть верхнюю часть выбранного интервала. Это совсем не сложно сделать, умножив каждое число на его логарифм. У бoльших чисел бoльшие логарифмы, а это как раз и требуется для того, чтобы выровнять среднее расстояние между нулями. В этом и состоит смысл слова «нормировка» в приведенной выше формулировке закона Монтгомери-Одлыжко. Теперь наша последовательность начинается числом 759 011,1279 и заканчивается числом 840 925,3931.

вернуться
вернуться

170

Это поднимает интересный вопрос о том, в какой степени они могут являться «настоящими» теоремами. Некий результат, в котором предполагается справедливость ГР, с моей точки зрения, сам, строго говоря, является гипотезой — или, если угодно, подгипотезой, но уж никак не настоящей теоремой. С учетом того, что математика считается наиболее точной из всех наук, математики не слишком последовательны по поводу использования таких терминов, как «предположение», «гипотеза» и «теорема». Почему, например, Гипотеза Римана — «гипотеза», а не «предположение»? Я не знаю, и мне не удалось найти никого, кто мог бы мне это разъяснить. И на беглый взгляд кажется, что эти замечания применимы, по-видимому, и к другим языкам, а не только к английскому. По-немецки, кстати, Гипотеза Римана — Die Riemannsche Vermutung, от глагола vermuten — высказывать догадку. (Неудивительно. Древнегреческое слово «гипотеза» как раз и означает «предположение». — Примеч. перев.)

вернуться

171

Майкл Берри — профессор физики в Бристольском университете в Англии. Возведен в рыцарское достоинство в июне 1996 г., став таким образом сэром Майклом Берри. Я очень старался упоминать его как Берри при описании его работ, сделанных до 1996 г., и как сэр Майкл после этого, но не гарантирую, что всегда был последователен.

вернуться

172

Где-то в конце 1980-х Cray-1 был дополнен компьютером Cray X-MP.

вернуться

173

Самой ранней ссылкой на закон Монтгомери-Одлыжко (именно под таким названием), которую мне удалось найти, является статья Николаса Каца и Питера Сарнака, опубликованная в 1999 г. Слово «закон» здесь, конечно, понимается в физическом, а не в математическом смысле. Это факт, установленный эмпирическим путем, как законы движения планет, сформулированные Кеплером. Это не математический принцип, подобный правилу знаков. В статье Сарнака и Каца на самом деле был доказан закон для дзета-функций над конечными полями (см. главу 17.iii), что позволило перекинуть мост между алгебраическим и физическим подходами к ГР.

вернуться

174

http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html (Примеч. перев.)

Перейти на страницу:

Семихатов Алексей читать все книги автора по порядку

Семихатов Алексей - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы

Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Семихатов Алексей. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*