Стратегические игры. Доступный учебник по теории игр - Диксит Авинаш (книги онлайн бесплатно .txt) 📗
Теперь подвести итоги анализа игры «уличный сад» методом обратных рассуждений не составит труда. Эмили выберет вариант «не вносить вклад», затем Нина – «внести вклад» и наконец Талия – тоже «внести вклад». Такая последовательность выбора образует конкретный путь игры на данном дереве, который проходит по нижней ветви, исходящей из начального узла, а затем по верхним ветвям в каждом из двух идущих друг за другом следующих узлов, с и f. На рис. 3.6 этот путь игры легко отследить как непрерывную последовательность стрелок, пролегающую от начального до пятого концевого узла, если вести отсчет от верхней части дерева. Выигрыши, которые получат участницы игры, показаны в концевом узле.
Анализ методом обратных рассуждений прост и привлекателен. Мы бы хотели подчеркнуть его некоторые особенности. Во-первых, обратите внимание, что на равновесном пути игры с последовательными ходами отсутствует большинство ветвей и узлов. Однако вычисление лучших действий, которые следовало бы предпринять, если бы игра все же их достигла, – важная часть процесса поиска окончательного равновесия. Выбор на ранних этапах игры ее участницы делают под влиянием своих ожиданий в отношении того, что произойдет, если они выберут действие, отличающееся от оптимального, а также что бы произошло, если бы любая из оставшихся участниц игры предпочла нечто иное, чем то, что является для нее лучшим. Эти ожидания, основанные на прогнозируемых вариантах выбора в узлах, расположенных вне равновесного пути игры (то есть в узлах, которые соответствуют ветвям, отсеченным в процессе анализа методом обратных рассуждений), позволяют участницам игры совершать оптимальные действия в каждом узле. Например, предпочтительный выбор Эмили «не вносить вклад», сделанный в первом узле, обусловлен пониманием того, что если она выберет вариант «внести вклад», то Нина выберет «не вносить вклад», после чего Талия решит «внести вклад»; эта последовательность обеспечит Эмили выигрыш 3 вместо выигрыша 4, который она могла бы получить, указав вариант «не вносить вклад» на первом ходе.
Равновесие обратных рассуждений обеспечивает полное описание всего процесса анализа посредством формулировки оптимальной стратегии для каждого игрока. Мы уже отмечали, что стратегия – это исчерпывающий план действий. Эмили делает первый ход, имея два варианта выбора, а значит, ее стратегия достаточно проста и фактически сводится к одному ходу. Но Нина, которая ходит второй, действует уже в каком-то из двух узлов: в одном – если Эмили выбрала вариант «внести вклад», и в другом – если Эмили предпочла «не вносить вклад». В исчерпывающем плане Нины должны быть указаны действия в каждом из этих случаев. Один такой план, или стратегия, может быть следующим: «Выбрать “внести вклад”, если Эмили выбрала “внести вклад”, и “не вносить вклад”, если Эмили его не вносит». Благодаря анализу методом обратных рассуждений мы знаем, что Нина не выберет эту стратегию, но на данном этапе нам необходимо описать все доступные стратегии, из которых Нина сможет выбирать согласно правилам игры. Мы можем сократить их описание, используя обозначение «В» вместо «внести вклад» и «Н» вместо «не вносить вклад». В результате вышеупомянутую стратегию можно представить так: «В, если Эмили выберет В, а значит, игра перейдет в узел b; Н, если Эмили выберет Н и игра перейдет в узел с», или еще проще: «В в b, Н в c», или даже «ВН», если обстоятельства, при которых выбирается каждое из указанных действий, очевидны или разъяснены ранее. Теперь легко увидеть, что поскольку у Нины по два варианта выбора в каждом из двух узлов, в которых она может действовать, в ее распоряжении находятся четыре плана действий, или стратегии: «В в b, В в c»; «В в b, Н в c»; «Н в b, В в c» и «Н в b, Н в c», или «ВВ», «ВН», «НВ» и «НН». Анализ методом обратных рассуждений, а также стрелки в узлах b и c на рис. 3.6 показывают, что оптимальная стратегия Нины – «НВ».
В случае Талии ситуация усложняется. Когда наступит ее черед, история игры может представлять собой любой из четырех возможных вариантов. Очередь действовать переходит к Талии в одном из четырех узлов дерева: один после выбора Эмили В и Нины В (узел d); второй после В Эмили и Н Нины (узел e); третий после Н Эмили и В Нины (узел f) и четвертый после Н и Эмили, и Нины (узел g). Каждая из стратегий (или исчерпывающих планов действий) Талии должна определять одно из двух действий по каждому из этих четырех сценариев или одно из двух действий в каждом из возможных узлов действия. При наличии четырех узлов, в которых необходимо указать действие, и двух действий, из которых следует выбрать одно в каждом узле, существует 2 × 2 × 2 × 2, или 16, вероятных комбинаций действий. Следовательно, в распоряжении Талии 16 доступных стратегий. Одну из них можно было бы записать так:
«В в d, Н в e, Н в f, В в g», или для краткости «ВННВ»
Здесь мы зафиксировали последовательность четырех сценариев (историй ходов Эмили и Нины) в порядке расположения узлов d, e, f и g. Далее с помощью такой же сокращенной формы записи можно составить полный список всех 16 находящихся в распоряжении Талии стратегий:
ВВВВ, ВВВН, ВВНВ, ВВНН, ВНВВ, ВНВН, ВННВ, ВННН, НВВВ, НВВН, НВНВ, НВНН, ННВВ, ННВН, НННВ, НННН.
Анализ методом обратных рассуждений дерева игры на рис. 3.6, а также стрелки в узлах d, e, f и g показывают, что оптимальная стратегия Талии – НВВН.
Теперь выводы нашего анализа методом обратных рассуждений можно представить в виде описания стратегического выбора, сделанного каждой участницей игры: Эмили выберет Н из двух имеющихся у нее стратегий, Нина – НВ из четырех доступных стратегий, а Талия – НВВН из шестнадцати стратегий. Когда каждая из участниц анализирует следующие ветви и узлы дерева игры, чтобы составить прогноз конечных результатов текущих действий, она вычисляет оптимальные стратегии других участниц игры. Эта конфигурация стратегий (Н в случае Эмили, НВ – Нины и НВВН – Талии) представляет собой равновесие в данной игре, полученное методом обратных рассуждений.
Мы можем объединить оптимальные стратегии участниц игры, чтобы найти фактический путь игры, который приведет к равновесию обратных рассуждений. Эмили начнет с выбора Н. Нина, придерживаясь своей стратегии НВ, выберет в ответ на действие Эмили Н действие В. (Помните: стратегия НВ Нины означает «выбрать Н, если Эмили выбрала В, и В, если Эмили предпочла Н».) Согласно принятой нами договоренности, фактическое действие Талии после Н Эмили и В Нины (из узла f) обозначается третьей буквой в нашем четырехбуквенном описании ее стратегий. Поскольку оптимальная стратегия Талии – НВВН, ее действие по пути игры – В. Таким образом, фактический путь игры состоит из действия Н, выбранного Эмили, и действия В, сделанного Ниной и Талией.
В итоге мы имеем три разные концепции:
1. Список доступных стратегий для каждого игрока, который, особенно для игроков, вступающих в игру на более поздних этапах, может быть очень длинным, поскольку необходимо перечислить их действия в ситуациях, соответствующих всем возможным предыдущим ходам других игроков.
2. Оптимальная стратегия, или исчерпывающий план действий, для каждого игрока. Эта стратегия должна описывать лучший выбор игрока в каждом узле, в котором, согласно правилам игры, игрок делает ход, даже если многие из этих узлов так и не будут достигнуты на фактическом пути игры. По сути, такое описание – это прогноз игроков, сделавших предыдущие ходы, относительно того, что бы произошло, если бы они предприняли другие действия, а значит, оно представляет собой важную часть определения их наилучших действий в предыдущих узлах. Совокупность оптимальных стратегий всех игроков образует равновесие обратных рассуждений.