Математические олимпиады по лигам. 5-9 классы - Павлов Андрей Николаевич (книги полностью бесплатно .txt) 📗
9 тур
1. На столе лежат в ряд четыре фигуры: треугольник, круг, прямоугольник и ромб. Они окрашены в разные цвета: красный, синий, желтый, зеленый. Известно, что красная фигура лежит где-то между синей и зеленой; непосредственно справа от желтой фигуры лежит ромб; круг лежит правее и треугольника, и ромба; треугольник лежит не с краю; синяя и желтая фигуры лежат не рядом. Определите, какого цвета какая фигура. Укажите все возможные решения.
2. Найдите значение выражения Зх3 + 2х2 + х, если
3. Два города, А и В, находятся на расстоянии 300 км друг от друга. Из этих городов одновременно выезжают друг другу навстречу два велосипедиста и мчатся, не останавливаясь, каждый со скоростью 50 км/ч. Но вместе с первым велосипедистом из города^ вылетает муха, пролетающая в час 120 км. Муха опережает первого велосипедиста, летит навстречу второму, выехавшему из В. Встретив его, она сразу поворачивает назад к велосипедисту А. Повстречав его, опять летит обратно навстречу велосипедисту В, и так продолжает она свои полеты взад и вперед до тех пор, пока велосипедисты не съехались. Тогда она успокоилась и села одному из велосипедистов на шапку. Сколько километров пролетела муха?
4. Школьник сказал своему приятелю Вите:
– У нас в классе семнадцать человек. И, представь, каждый из них дружит ровно с пятью одноклассниками.
– Не может этого быть, – сразу ответил Витя.
Почему он так решил?
5. Женю, Леву и Гришу рассадили так, что Женя мог видеть Леву и Гришу, Лева-только Гришу, а Гриша – никого. Потом из мешка, в котором лежали две белые и три черные шапки (содержимое мешка было известно мальчикам), достали и надели на каждого шапку неизвестного ему цвета, а две шапки остались в мешке (какие именно – мальчикам неизвестно).
Женя сказал, что он не может определить цвет своей шапки. Лева слышал ответ Жени и сказал, что и у него не хватает данных для определения цвета своей шапки. Мог ли Гриша на основании этих ответов определить цвет своей шапки? Если нет, то почему; если да, то как?
6. «То» да «это», да половина «того» да «этого» – сколько это будет процентов от трех четвертей «того» да «этого»?
10 тур
1. На экзамене преподаватель предлагает студенту пять вопросов, на которые надо ответить «да» или «нет». Студент знает, что ответов «да» больше, чем «нет», и что преподаватель никогда не задает три вопроса подряд, требующие одинакового ответа. Из содержания первого и последнего вопросов ему ясно, что ответы на них должны быть противоположны. Единственный вопрос, ответ на который ему известен, – второй. И этот ответ – «нет». Какими должны быть ответы на эти пять вопросов?
2. В меню входят: овощной суп или бульон на первое, бифштекс, цыпленок или рыба на второе и компот или мороженое на третье. Полный обед состоит из одного блюда на первое, одного блюда на второе и одного блюда на третье.
а) Сколько может быть различных полных обедов?
б) Сколько может быть полных обедов с бифштексом в качестве второго?
3. Имеется девять монет, о которых известно, что восемь из них имеют одинаковый вес, а девятая несколько тяжелее остальных. Покажите, что более тяжелая монета может быть отделена от остальных посредством двух взвешиваний на чашечных весах (без гирь).
4. Изготовление книги включает в себя несколько стадий: сначала ее набирают, затем печатают и наконец делают к ней обложку и переплетают. Допустим, что наборщик берет 6 долларов (600 центов) в час, бумага стоит 1/4 цента за лист, печатник берет 11 центов за каждую минуту работы его пресса, обложка стоит 28 центов и переплетчик берет 15 центов за переплетение каждой книги. Допустим теперь, что издатель хочет напечатать книгу, для которой требуется 300 ч работы наборщика, 220 листов бумаги на один экземпляр и 5 мин работы одного печатного пресса на каждый экземпляр. Найдите стоимость издания одного экземпляра книги.
5. Что больше и на сколько: 20 % от 30 или 30 % от 20?
6. Маша съедает коробку конфет за 5 мин, а Даша – за 6 мин. За какое время будут съедены все конфеты, если Маша и Даша займутся решением данного вопроса одновременно?
Суперлига
1 тур
1. В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съела 3 щук (сытых или голодных). Каково наибольшее число щук, которые могут насытиться?
2. В бочке 10 литров бензина. Как отлить из нее 6 литров с помощью девятилитрового ведра и пятилитрового бидона?
3. Отец старше сына в 4 раза, а сумма их возрастов составляет 50 лет. Через сколько лет отец станет втрое старше сына?
4. Расставьте в записи 4 · 12 + 18:6 + 3 скобки так, чтобы получилось: а) число 50; б) наименьшее возможное число; в) наибольшее возможное число.
5. При сложении двух целых чисел ученик по ошибке поставил во втором слагаемом лишний нуль на конце и получил в сумме 6641 вместо 2411. Определите слагаемые.
6. При делении одного числа на другое получилось в частном 28 и в остатке 84. Как изменится частное и как изменится остаток, если делимое и делитель уменьшить в 7 раз?
2 тур
1. Куб со стороной 1 м распилили на кубики со стороной 1 см. Получившиеся кубики выложили вряд. Чему равна длина ряда?
2. Применяя знаки арифметических действий и, возможно, скобки, запишите восемью двойками число 200 (разрешено использовать такие числа, как 22, 222, 2222 и т. д.).
3. Во сколько раз увеличится трехзначное число, если справа к нему приписать такое же число? Ответ подтвердите двумя примерами.
4. Докажите, что из любых трех целых чисел можно найти два, сумма которых делится на 2.
5. Сошлись два пастуха, Иван и Петр. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!» А Петр ему отвечает: «Нет! Лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!» Сколько же было у каждого овец?
6. На прямоугольном торте лежит круглая шоколадка, причем отнюдь не посередке. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
3 тур
1. В коробке лежат 4 цветных карандаша и 10 простых. Берут из этой коробки наугад несколько карандашей. Какое наименьшее число карандашей надо взять из коробки, чтобы среди них с гарантией оказалось не менее: а) двух цветных; б) трех простых?
2. Поблизости один от другого расположены два населенных пункта, А и В. Все жители А говорят только правду, а жители В всегда лгут. Жители А и В посещают друг друга. Ты находишься в каком-то из этих пунктов. Какой вопрос (только один) ты можешь задать первому встретившемуся тебе в этом пункте человеку, чтобы по ответу на этот вопрос ты мог установить, А это или В?
3. Два мальчика играли в шашки. Положение первого игрока стало ухудшаться. Пока он обдумывал очередной ход, второй игрок рассматривал доску, на которой стояли шашки. Оказалось, что пустых клеток на доске было втрое больше, чем занятых шашками, и что у него на две шашки больше, чем у первого игрока. Сколько шашек у каждого игрока было в это время на доске?
4. Школьники ехали на автомашине из деревни в город. Когда они проехали 3/4 пути, автомашина была остановлена для ремонта. Оставшуюся часть пути школьники проделали пешком, затратив на это времени в четыре раза больше, чем они ехали на автомашине. Во сколько раз быстрей ехали школьники на автомашине, чем шли пешком?
5. Дано трехзначное число ABB, произведение цифр которого – двузначное число AC, произведение цифр этого числа равно С (здесь цифры в записи числа заменены буквами; одинаковым буквам соответствуют одинаковые цифры, разным – разные). Определите исходное число.