Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Математические олимпиады по лигам. 5-9 классы - Павлов Андрей Николаевич (книги полностью бесплатно .txt) 📗

Математические олимпиады по лигам. 5-9 классы - Павлов Андрей Николаевич (книги полностью бесплатно .txt) 📗

Тут можно читать бесплатно Математические олимпиады по лигам. 5-9 классы - Павлов Андрей Николаевич (книги полностью бесплатно .txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

4. Три землекопа за 2 ч выкопали три ямы. Сколько ям выкопают шесть землекопов за 5 ч?

5. Сколько треугольников «спрятано» на рисунке?

Математические олимпиады по лигам. 5-9 классы - i_014.png

6. Летела стая гусей, а навстречу им летит один гусь и говорит: «Здравствуйте, сто гусей!» А передний старый гусь ему и отвечает: «Нет, нас не сто гусей! Вот, если б нас было еще столько, да еще полстолька, да еще четверть столько, да ты, гусь, то было бы сто гусей, а теперь… Вот и рассчитай-ка, сколько нас?»

4 тур

1. 3 кедровых ореха можно обменять на 2 лимона, а 3 лимона можно обменять на 4 яблока. Сколько кедровых орехов можно обменять на 16 яблок?

2. Из цифр 0, 2, 3, 5, 8 составьте все трехзначные числа, сумма цифр в каждом из которых равна 8 (цифры в числе могут повторяться).

3. Путь, пройденный туристом за один день, оказался в три раза больше, чем половина оставшегося пути. Какую часть всего пути прошел турист за день?

4. Придумайте задачу, которая решалась бы с помощью уравнения 2 · (х + 1) + х = 32.

5. Найдите площадь треугольника, изображенного на рисунке. Площадь одной клетки равна 1.

Математические олимпиады по лигам. 5-9 классы - i_015.png

6. В токарном цехе вытачиваются детали из стальных заготовок, из одной заготовки – деталь. Стружки, оставшиеся после обработки трех заготовок, можно переплавить и получить ровно одну заготовку. Сколько всего деталей можно сделать из 9-ти заготовок? А из 14-ти? Сколько нужно взять заготовок, чтобы получить 40 деталей?

5 тур

1. Сумма шести различных натуральных чисел равна 22. Найдите эти числа.

2. Пятиклассникам очень понравилась поездка в Великий Устюг, и они решили поехать туда снова, дабы навестить веселых Дедов Морозов. Ежемесячно каждый ученик вносил определенное количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49 685 р. Сколько было в группе учеников, и какую сумму внес каждый?

3. Четыре подруги пришли на каток, каждая со своим братом. Они разбились на пары и начали кататься. Оказалось, что в каждой паре «кавалер» выше «дамы» и никто не катается со своей сестрой. Самым высоким в компании был Юра Воробьев, следующим по росту – Андрей Егоров, потом Люся Егорова, Сережа Петров, Оля Петрова, Дима Крымов, Инна Крымоваи Аня Воробьева. Определите, кто с кем катался?

4. Простые числа имеют только два различных делителя – единицу и само это число. Найдите первые три числа, имеющие ровно три различных делителя. Догадаетесь ли вы, какие числа имеют только три различных делителя?

5. Полный бидон с молоком весит 34 кг, а наполненный до половины – 17 кг 500 г. Сколько весит пустой бидон?

6. Из литра молока получают 150 г сливок, а из литра сливок – 300 г масла. Сколько масла получится из 100 л молока?

6 тур

1. На почтовом ящике написано: «Выемка писем производится пять раз в день с 7 до 19 ч». И действительно, первый раз почтальон забирает почту в 7 ч утра, а последний – в 7 ч вечера. Через какие интервалы времени вынимают письма из ящика?

2. Вычислите 66 509 + 141 404: (39 839 – 39 793) + 1985.

3. В классе учится меньше чем 50 школьников. За контрольную работу седьмая часть учеников получила пятерки, третья – четверки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько всего учащихся в классе?

4. Ковбой Билл зашел в бар и попросил у бармена бутылку виски за 3 доллара и 6 коробков непромокаемых спичек, цену которых он не знал. Бармен потребовал с него 11 долларов 80 центов (1 доллар – 100 центов), и в ответ на это Билл вытащил револьвер. Тогда бармен пересчитал стоимость покупки и исправил ошибку. Как Билл догадался, что бармен пытался его обсчитать?

5. Однажды на лестнице была найдена странная тетрадь. В ней было записано четыре утверждения:

«В этой тетради ровно одно неверное утверждение»;

«В этой тетради ровно два неверных утверждения»;

«В этой тетради ровно три неверных утверждения»;

«В этой тетради ровно четыре неверных утверждения».

Есть ли среди этих утверждений верные, и если да, то какие?

6. Вася взял у товарища книгу на три дня. В первый день он прочел полкниги, во второй – треть оставшихся страниц, а в третий день прочитал половину прочитанного за первые два дня. Успел ли Вася прочитать всю книгу за три дня? Ответ обоснуйте.

7 тур

1. – Еще веревочку? – спросила мать, вытаскивая руки из лоханки с бельем. – Можно подумать, что я вся веревочная. Только и слышишь: веревочку да веревочку. Ведь я вчера дала тебе порядочный клубок. Куда ты ее девала?

– Во-первых, половину ты сама взяла обратно. Половину того, что осталось, взял у меня Том, чтобы удить в канаве колюшек. Осталось совсем немного, да из того еще папа взял половину для починки подтяжек, которые лопнули у него от смеха, когда случилась беда с автомобилем. А после понадобилось еще сестре взять две пятых оставшегося, чтобы завязать свои волосы узлом.

– Что же ты сделала с остальной веревочкой?

– С остальной? Остальной-то было всего-навсего 30 см! Вот и устраивай телефон из такого обрывка…

Какую же длину имела веревочка первоначально?

2. Ира, Наташа, Алеша и Витя собирали грибы. Наташа собрала больше всех, Ира не меньше всех, а Алеша – больше, чем Витя. Верно ли, что девочки собрали грибов больше, чем мальчики?

3. Чему равна площадь треугольника со сторонами 8, 7 и 15?

4. Пять первоклассников стояли в шеренгу и держали 37 флажков. У всех справа от Таты – 14 флажков, справа от Яши – 32, справа от Веры – 20, справа от Максима – 8. Сколько флажков у Даши?

5. Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части – 9 и 15 кг?

6. Решите уравнение

Математические олимпиады по лигам. 5-9 классы - i_016.png

8 тур

1. Шли три крестьянина и зашли на постоялый двор отдохнуть и пообедать. Заказали хозяйке сварить картофель, а сами заснули. Хозяйка сварила картофель, но не стала будить постояльцев, а поставила миску с картофелем на стол и ушла. Проснулся один крестьянин, увидел картофель и, чтобы не будить товарищей, сосчитал картофель, съел свою долю и снова заснул. Вскоре проснулся другой; ему невдомек было, что один из товарищей уже съел свою долю, поэтому он сосчитал весь оставшийся картофель, съел третью часть и опять заснул. После него проснулся третий; полагая, что он проснулся первым, он сосчитал весь оставшийся в миске картофель и съел третью часть. Тут проснулись его товарищи и увидели, что в миске осталось 8 картофелин. Тогда только объяснилось дело. Сосчитайте, сколько картофелин подала на стол хозяйка?

2. Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды.

– Я вдвое старше юнги и на 6 лет старше машиниста, – сказал рулевой.

– А я на столько же старше юнги, на сколько моложе машиниста, – заметил боцман. – Кроме того, я на 4 года старше матроса.

– Средний возраст команды – 28 лет, – дал справку капитан.

Сколько лет капитану?

3. В шахматном турнире участвовали 40 игроков, и каждый сыграл с каждым по одной партии. Сколько было сыграно партий?

4. Два пильщика должны распилить бревно, длина которого 5 1/2 м, на полуметровые чурки. Во сколько минут они сделают это, если распиловка бревна поперек продолжается каждый раз 2 1/2 мин?

5. В 100-значном числе 12345678901234567890…1234567890 вычеркнули все цифры, стоящие на нечетных местах; в полученном 50-значном числе вновь вычеркнули все цифры, стоящие на нечетных местах, и т. д. Вычеркивание продолжалось до тех пор, пока было что вычеркивать. Какая цифра была вычеркнута последней?

6. Докажите, что разность 9100– 7100 делится на 10.

Перейти на страницу:

Павлов Андрей Николаевич читать все книги автора по порядку

Павлов Андрей Николаевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Математические олимпиады по лигам. 5-9 классы отзывы

Отзывы читателей о книге Математические олимпиады по лигам. 5-9 классы, автор: Павлов Андрей Николаевич. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*