Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Тут можно читать бесплатно Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
Том 12. Числа-основа гармонии. Музыка и математика - _10.jpg

После того как мы получили 12 нот, упорядочив квинты, нетрудно вычислить частоты всех нот, лежащих в пределах одной октавы, путем сдвига на одну или несколько октав.

Подсчеты

Определим частоту каждой ноты с помощью цепочки квинт и сдвига на одну или несколько октав, то есть путем деления и умножения частоты на 2. Напомним, что отношение между частотами звуков всегда будет принимать значение между 1 (соотношение частоты одного и того же звука) и 2 (отношение частот нот до соседних октав).

Сначала определим относительную частоту ноты соль, которая отстоит на одну квинту от ноты до:

соль = 3/2

Затем определим частоту ноты ре, которая отстоит на одну квинту от соль (необходимо умножить частоту на 3/2), но потребуется сдвиг на одну октаву ниже (умножить частоту на 1/2):

Том 12. Числа-основа гармонии. Музыка и математика - _11.jpg

Расстояние между до и ре называется целым тоном. Как и следовало ожидать, один тон равен двум полутонам.

Затем определим относительную частоту ноты ля, отстоящей на одну квинту от ре:

Том 12. Числа-основа гармонии. Музыка и математика - _12.jpg

Нота ми отстоит на одну квинту от ля, но потребуется сдвиг на одну октаву ниже:

Том 12. Числа-основа гармонии. Музыка и математика - _13.jpg

Последние ноты строя — си, отстоящая на одну квинту от ми, и фа, для получения которой необходим сдвиг на одну квинту ниже до с последующим смещением на одну октаву выше (потребуется умножить частоту на 2).

Приняв частоту до за 1, представим частоты всех нот в таблице:

Том 12. Числа-основа гармонии. Музыка и математика - _14.jpg

Можно повторить эти же действия, чтобы определить частоты бемолей, соответствующих черным клавишам пианино.

Для этого нужно последовательно выполнять сдвиг на одну квинту ниже, начиная с ноты фа.

Том 12. Числа-основа гармонии. Музыка и математика - _15.jpg

Пифагорейская комма

На одну квинту выше ноты си находится фа-диез, который должен совпадать с соль-бемоль. Но это не один и тот же звук: разница между фа-диез и соль-бемоль называется пифагорейской коммой. Аналогично, определив частоты фа-диез и ре-бемоль, мы увидим, что они отстоят друг от друга не на одну кварту, а на интервал, который отличается от квинты на одну пифагорейскую комму. Эта квинта, которая немного меньше настоящей, называется волчьей квинтой.

Построив квинтовый круг из 12 квинт, мы получим ноту, которая немного отличается от первоначальной и отстоит от нее на семь октав:

Том 12. Числа-основа гармонии. Музыка и математика - _16.jpg

Это «немного» и есть пифагорейская комма. Ее значение (обозначим его ПК) можно вычислить, взяв за основу частоту f и сравнив цепочку из 12 квинт, начиная с f, с цепочкой из семи октав:

Том 12. Числа-основа гармонии. Музыка и математика - _17.jpg

Отличие будет чуть больше 1 % октавы или, что равносильно, почти четверть полутона. Это отличие вызвано тем, что дробь, соответствующая квинте, несовместима с дробью, соответствующей октаве, что нетрудно показать. Для этого попробуем найти такие показатели степеней х и у, которые позволят связать эти две дроби:

Том 12. Числа-основа гармонии. Музыка и математика - _18.jpg

Из последнего равенства следует, что нужно найти число, которое одновременно было бы степенью двух и трех. Однако, так как 2 и 3 являются простыми числами, это противоречит основной теореме арифметики, согласно которой любое положительное число можно однозначно представить в виде произведения простых множителей. Эту теорему, которую сформулировал Евклид, впервые полностью доказал Карл Фридрих Гаусс. Из нее следует, что квинта и октава пифагорейского строя никогда не совпадут, то есть не существует хроматического строя без пифагорейской коммы, что аналогично.

Другие разновидности музыкального строя

И человеческий голос, и безладовые инструменты допускают использование так называемого натурального строя, в котором ноты более согласованны, гармоничны. И голос, и струнные инструменты допускают незначительное изменение высоты издаваемого звука (корректировку строя) для наибольшего созвучия. Как вы увидели, пифагорейский строй создается на основе одной главной ноты, из которой получаются остальные ноты путем упорядочивания чистых квинт. Однако это вызывает некоторые математические затруднения: во-первых, несовместимость квинты и октавы ведет к появлению уже упомянутой волчьей квинты, во-вторых, существует несовместимость между квинтами и большими терциями.

В пифагорейском строе соотношение частот для терций получается с помощью цепочки из четырех квинт. Используя смещение на одну или несколько октав, получим, что соотношение частот равно 81:64. Однако существует и другой способ определения терции с помощью простого соотношения 5/4 или, что равносильно, 80:64. Это чистая терция.

Отсюда следует, что в пифагорейском строе, представляемом в виде последовательности квинт, терции не являются чистыми. На белых клавишах пианино расположены три терции: до — ми, фа — ля и соль — си. Можно сказать, что пифагорейский строй состоит из чистых квинт в ущерб чистоте терций.

Диатонический строй

В результате поисков «чистого» натурального строя появилась новая система отношения звуков — диатонический строй. В пифагорейском строе звуки выражаются в виде последовательности квинт. Диатонический строй имеет более сложную структуру.

Начиная с ноты до, соблюдая интервалы в одну квинту, откладываются две следующие основные ноты этого строя: фа и соль. Далее определяются ми, ля и си, отстоящие на чистую терцию от до, фа и соль соответственно.

Последняя нота, ре, отстоит от ноты соль ровно на одну квинту:

Том 12. Числа-основа гармонии. Музыка и математика - _19.jpg

Интервалы диатонического строя «чище» и более постоянны. Это проявляется и в том, что соотношения частот звуков диатонического строя относительно просты. Сначала, начиная с ноты до, частота которой принимается равной 1, рассчитываются частоты нот фа и соль, отстоящих от до на одну чистую квинту. Частота фа принимается равной 4/3, частота соль — 3/2. Далее рассчитывается частота ноты ми, отстоящей от до на 5/4.

Аналогично определяется частота ноты ля, которую отделяет от фа одна терция:

Том 12. Числа-основа гармонии. Музыка и математика - _20.jpg

Си отстоит на одну терцию от соль:

Том 12. Числа-основа гармонии. Музыка и математика - _21.jpg

И наконец, рассчитывается частота ре, которую отделяет от ноты соль одна чистая квинта со сдвигом в одну октаву:

Том 12. Числа-основа гармонии. Музыка и математика - _22.jpg

Последовательность, определяющая интервалы диатонического строя, подчиняется структуре тональной музыки. К тональной музыке принадлежит подавляющее большинство музыкальных композиций, созданных за последние несколько веков, начиная от периода барокко и классики и заканчивая рок- и поп-музыкой, а также западной фолк-музыкой.

Перейти на страницу:

Арбонес Хавьер читать все книги автора по порядку

Арбонес Хавьер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Том 12. Числа-основа гармонии. Музыка и математика отзывы

Отзывы читателей о книге Том 12. Числа-основа гармонии. Музыка и математика, автор: Арбонес Хавьер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*