Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗

Тут можно читать бесплатно Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _355.jpg

В нем не только строки, столбцы и диагонали дают в сумме 15, но если вы представите строки магического квадрата как трехзначные числа, то сможете удостовериться с помощью калькулятора, что 4922 + 3572 + 8162 = 2942 + 7532 + 6182. Так же как 4382 + 9512 + 2762 = 8342 + 1592 + 6722. Если вам любопытно, почему так происходит, вы найдете ответ в моей статье Magic «Squares» Indeed! («В самом деле “магические” квадраты!»), ссылка на которую дана в библиографии.

БЫСТРЫЕ КУБИЧЕСКИЕ КОРНИ

Попросите кого-нибудь выбрать двузначное число, но не называть его. Затем попросите возвести это число в куб, то есть умножить само на себя трижды, используя калькулятор. Например, если секретное число 68, пусть доброволец вычислит 68 х 68 х 68 = 314 432 и назовет ответ. Как только он произнесет его вслух, вы можете мгновенно раскрыть секрет исходного числа — это кубический корень 68. Как это делается?

Чтобы быстро вычислять кубические корни, нужно выучить кубы чисел от 1 до 10.

13 = 1

23 = 8

33 = 27

43 = 64

53 = 125

63 = 216

73 = 343

83 = 512

93 = 729

103 = 1000

Как только вы запомните эти значения, вычислять кубические корни станет так же легко, как и назвать значение числа ?. Приведем пример.

Чему равен кубический корень из 314 432?

Кажется, что это довольно сложное задание для начала, но не паникуйте, на самом деле оно довольно простое. Как обычно, будем двигаться постепенно.

1. Посмотрите на величину тысяч, 314 в данном примере.

2. Поскольку 314 лежит между 63 = 216 и 73 = 343, то кубический корень находится в диапазоне «60 плюс» (так как 603 = 216 000 и 703 = 343 000). Следовательно, первая цифра кубического корня будет 6.

3. Для определения последней цифры заметьте, что только куб числа 8 оканчивается на 2 (83 = 512), так что последней цифрой будет 8.

Поэтому кубический корень из 314 432 равен 68. Три простых шага — и вы у цели. Обратите внимание, что каждая цифра от 0 до 9 появляется по одному разу в виде последней цифры куба.

А теперь попрактикуйтесь.

Чему равен кубический корень из 19 683?

1. 19 находится между 8 и 27 (23 и 33).

2. Следовательно, кубический корень лежит в диапазоне «20 плюс».

3. Последняя цифра в задаче 3, что соответствует 343 = 73, значит, 7 и будет последней цифрой.

Ответ: 27.

Обратите внимание, что наши выводы по поводу последней цифры работают только тогда, когда исходное число является кубом целого числа. Например, кубический корень из 19 684 будет 27,0004572… Определенно не 27. Вот почему эта тема включена в раздел математической магии, а не в более ранние главы. (Кроме того, расчеты производятся настолько быстро, что кажется, будто без магии не обошлось!)

УПРОЩЕННЫЕ КВАДРАТНЫЕ КОРНИ

Квадратные корни так же просто вычислить, если задан полный квадрат. Например, если кто-то сказал вам, что квадрат двузначного числа равен 7569, то вы в состоянии мгновенно ответить, что исходное число (квадратный корень) равно 87. Вот как это делается.

1. Посмотрите на величину сотен (цифры, предшествующие последним двум) в данном примере.

2. Так как 75 находится между 82 (8 х 8 = 64) и 92 (9 х 9 = 81), то нам известно, что квадратный корень будет где-то в диапазоне «80 плюс». Следовательно, его первая цифра 8.

Существует два числа, квадраты которых заканчиваются на 9: 32 = 9, 72 = 49. Поэтому последняя цифра квадратного корня должна равняться 3 или 7. Таким образом, квадратный корень равен либо 83, либо 87. Какой из них?

3. Сравните исходное число с квадратом числа 85 (который можно легко посчитать как 80 х 90 + 25 = 7225). Так как 7569 больше, чем 7225, квадратный корень будет бoльшим числом, то есть 87.

Решим еще один пример.

Чему равен квадратный корень из 4761?

Поскольку 47 лежит между 62 = 36 и 72 = 49, ответ должен находиться в диапазоне «60 плюс». Если последняя цифра квадрата равна 1, то последняя цифра квадратного корня должна быть 1 или 9. Так как 4761 больше 652 = 4225, то квадратный корень должен равняться 69. Как и с предыдущим трюком для кубического корня, этот метод можно использовать только тогда, когда исходное число является полным квадратом.

УДИВИТЕЛЬНАЯ СУММА

Следующий трюк мне впервые показал Джеймс Рэнди, который эффективно использовал его в своей магии. В нем волшебник предсказывает сумму четырех случайно выбранных трехзначных чисел.

Чтобы подготовить такой фокус, понадобятся три колоды из девяти карт каждая и лист бумаги с записанным числом 2247, который вы запечатаете в конверт. Далее над каждым комплектом карт произведите следующие действия.

На колоде А запишите такие цифры (одно на каждую карту):

4286 5771 9083 6518 2396 6860 2909 5546 8174

На колоде Б запишите числа:

5792 6881 7547 3299 7187 6557 7097 5288 6548

На колоде В запишите следующие числа:

2708 5435 6812 7343 1286 5237 6470 8234 5129

Выберите троих человек из аудитории и вручите им по колоде карт. Пусть каждый из них наугад вытащит оттуда одну карту. Допустим, это карты с числами 4286, 5792 и 5435. Теперь, соблюдая очередность, пусть каждый громко назовет одну из цифр четырехзначного числа: сначала человек А, потом человек Б и, наконец, человек В. Скажем, они назвали цифры 8, 9 и 5. Запишите их (получится число 895) и скажите: «Вы должны признать, что данное число — результат абсолютно случайного выбора и его нельзя заранее предсказать».

Далее пусть три человека назовут другие цифры своих карт. Скажем, 4, 5 и 3. Запишите 453 ниже числа 895. Затем повторите данную процедуру еще два раза для двух оставшихся чисел, получив в итоге четыре трехзначных числа, например:

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _356.jpg

Затем пусть кто-нибудь сложит эти четыре числа и назовет сумму. А дальше пусть кто-то откроет конверт и покажет ваше предсказание. Теперь наслаждайтесь аплодисментами!

Почему это работает

Взгляните на числа на картах каждой колоды и подумайте, прослеживается ли в них какая-либо последовательность. Каждый набор чисел в сумме дает одинаковую величину. Сумма цифр каждого числа колоды А равна 20. Сумма цифр каждого числа колоды Б — 23. И сумма цифр каждого числа колоды В равна 17. Поскольку цифры из колоды В, которые в правом столбике, всегда в сумме дают 17, то в итоговой сумме в разряде единиц можно записать 7 и запомнить перенос 1 в следующий разряд.

Так как цифры из колоды Б в сумме дают 23, то в итоговой сумме в разряде десятков можно записать 4 (3 + 1) и запомнить перенос 2 в следующий разряд. Наконец, цифры из колоды А в сумме дают 20, поэтому после прибавления 2 получим итоговую сумму 2247!

ДЕНЬ ДЛЯ ЛЮБОЙ ДАТЫ
Перейти на страницу:

Шермер Майкл читать все книги автора по порядку

Шермер Майкл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Магия чисел. Ментальные вычисления в уме и другие математические фокусы отзывы

Отзывы читателей о книге Магия чисел. Ментальные вычисления в уме и другие математические фокусы, автор: Шермер Майкл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*