Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗

Тут можно читать бесплатно Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Шермер Майкл (читаемые книги читать онлайн бесплатно полные txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
СЛОЖЕНИЕ ЧЕХАРДА

Этот прием сочетает в себе быстрые вычисления в уме и поразительные предсказания. Вручите зрителю карту с расчерченными на ней десятью линиями, пронумерованными от 1 до 10.

Пусть он загадает два положительных числа от 1 до 20 и подпишет ими линии 1 и 2. Далее попросите его записать сумму 1-й и 2-й линий на линии 3. Затем сумму линии 2 и 3 на линии 4 и так далее, как проиллюстрировано ниже.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _346.jpg

Пусть зритель покажет вам карту. Вы сразу же можете назвать ему сумму всех чисел на ней. Например, в нашем случае вы могли бы мгновенно объявить, что числа в сумме дают 671 (быстрее, чем зритель подсчитал бы это с калькулятором).

В качестве приза вручите зрителю калькулятор и попросите его разделить число на линии 10 на число с линии 9. В данном примере получится частное 257/159 = 1,616. Пусть он произнесет первые три цифры частного, а после перевернет карточку (там вы уже написали свое предсказание). Он будет очень удивлен увиденным 1,61!

Почему это работает

Для выполнения быстрого расчета нужно просто умножить число с линии 7 на 11. Здесь 61 х 11 = 671. Причина эффективности этого приема проиллюстрирована в таблице ниже. Если обозначить числа на линиях 1 и 2 как х и у соответственно, а затем просуммировать числа на всех линиях от 1 до 10, то в итоге выйдет 55х + 88у, что составляет 11 х (5х + 8у). А это равно произведению числа 11 на число на линии 7.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _347.jpg

Что касается прогнозирования, то здесь используется тот факт, что для любых положительных чисел a, b, c, d, если a/b < c/d, то значение дроби, которая получается путем «ошибочного сложения дробей» (то есть путем сложения числителей и сложения знаменателей), будет лежать между двумя исходными дробями. Другими словами, применяем неравенства:

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _348.jpg

Таким образом, частное от деления числа на линии 10 на число на линии 9, (21х + 34у)/(13х + 21у), должно быть между

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _349.jpg

Следовательно, частное должно начинаться с цифр 1,61, как и было предсказано.

По сути, если продолжать такую «чехарду» до бесконечности, отношение последовательно идущих значений будет все ближе подбираться к значению

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _350.jpg

Это число с настолько огромным количеством удивительно красивых и загадочных свойств, что его часто называют золотым отношением (золотым сечением).

МАГИЧЕСКИЕ КВАДРАТЫ

Вы готовы к испытанию совершенно иного рода? Ниже размещен пример «магического квадрата». Сколько же о нем было написано еще во времена Древнего Китая! Но мы расскажем о способе создания магических квадратов в развлекательном стиле. Эту заученную схему я исполнял годами.

Я показываю визитку со следующей надписью на задней стороне:

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _351.jpg

И говорю: «Перед вами магический квадрат. Это самый маленький магический квадрат, который можно создать, используя числа от одного до шестнадцати. Здесь суммы чисел в каждой строке и каждом столбце дают одно и то же число — тридцать четыре. Я провел весьма широкое исследование на тему магических квадратов, поэтому предлагаю создать один прямо на ваших глазах».

Затем я прошу кого-либо из аудитории назвать любое число больше 34. Предположим, это будет 67. После достаю еще одну визитку, рисую пустую сетку «4 на 4» и помещаю число 67 справа от нее. Далее прошу человека указывать на квадраты по одному, в любом порядке. Как только он указывает на пустую клетку, я незамедлительно записываю в нее число.

Конечный результат выглядит так:

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _352.jpg

Я продолжаю: «В случае с первым магическим квадратом каждая строка и каждый столбец при сложении давали тридцать четыре. (На этом этапе я обычно откладываю карточку с квадратом в сторону.) Теперь посмотрим, что у нас получилось с новым квадратом». Убедившись, что элементы каждой строки и каждого столбца действительно дают в сумме 67, я говорю: «Но я не останавливаюсь на этом. Специально для вас я решил пойти еще на один шаг дальше. Обратите внимание, что обе диагонали при сложении дают шестьдесят семь!» Затем я указываю на то, что сумма четырех квадратов в левом верхнем углу тоже равна 67 (16 + 19 + 22 + 10 = 67), как и остальных квадратов такого же размера! «Они все в сумме равны шестидесяти семи. Но не верьте мне на слово. Пожалуйста, оставьте себе магический квадрат в качестве сувенира и проверьте его потом сами!»

КАК СОСТАВИТЬ МАГИЧЕСКИЙ КВАДРАТ

Вы можете создать магический квадрат, который при суммировании давал бы любое число, воспользовавшись исходным магическим квадратом с суммой 34. Держите его при этом на виду. Пока вы чертите сетку «4 на 4», устно выполните следующие вычисления.

1. Вычтите 34 из заданного числа (например, 67–34 = 33)

2. Разделите полученное число на 4 (например, 33/4 = 8 с остатком 1)

Частное — это первое «магическое» число. Частное плюс остаток — второе «магическое» число. (Здесь магические числа 8 и 9.)

3. Когда доброволец указывает на пустой квадрат, незаметно взгляните на квадрат 34, чтобы узнать, какой квадрат ему соответствует. Если это квадрат с числами 13, 14, 15 или 16, прибавьте к ним второе число (в нашем примере 9). Если нет, то прибавьте первое магическое число (8).

4. Вставляйте подходящее число до тех пор, пока не закончите составление магического квадрата.

Обратите внимание: когда заданное число четное, но не кратное 4, ваши первое и второе магические числа будут одинаковыми. Так что у вас будет только одно магическое число для прибавления его к числам из квадрата 34.

Почему это работает

Этот метод работает потому, что каждая строка, столбец и диагональ из исходного магического квадрата при сложении дают 34. Предположим, заданное число 82. Так как 82–34 = 48 (и 48/4 = 12), то следует прибавлять 12 к каждому числу в каждой ячейке исходного магического квадрата. В результате каждая «группа четверок», которая до этого равнялась 34, будет при сложении давать 34 + 48 = 82. Можете убедиться в этом на примере следующего магического квадрата.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _353.jpg

С другой стороны, если бы заданным числом было 85, магическими числами были бы 12 и 15. Поэтому мы прибавим 15 к квадратикам, которые содержат числа 13, 14, 15 и 16. Так как каждые строка, столбец и квадрат «2 на 2» содержат одно из этих чисел, то каждая группа из 4 клеток будет при сложении давать 34 + 12 х 3 + 15 = 85, как в следующем магическом квадрате.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы - _354.jpg

В качестве интересного математического пустячка позвольте отметить еще одно удивительное свойство знаменитого магического квадрата «3 на 3», показанного ниже.

Перейти на страницу:

Шермер Майкл читать все книги автора по порядку

Шермер Майкл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Магия чисел. Ментальные вычисления в уме и другие математические фокусы отзывы

Отзывы читателей о книге Магия чисел. Ментальные вычисления в уме и другие математические фокусы, автор: Шермер Майкл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*