Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Грасиан Энрике (лучшие книги читать онлайн txt) 📗

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Грасиан Энрике (лучшие книги читать онлайн txt) 📗

Тут можно читать бесплатно Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Грасиан Энрике (лучшие книги читать онлайн txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Ферма не смог определить, является ли это число простым. Но Эйлеру в 1732 г. удалось представить это число в виде произведения двух множителей:

4294967297 = 641 х 6700417.

Тем самым Эйлер показал, что гипотезы Ферма могут быть ложными. Нечто подобное произошло впервые. И хотя гипотеза оказалась ошибочной, числа Ферма продолжают играть важную роль — не только потому, что благодаря им возникли новые идеи и гипотезы, но и потому, что они оказались полезными для выявления простых чисел.

В настоящее время известно, что только первые пять чисел Ферма являются простыми. Но это вовсе не означает, что других простых чисел Ферма не существует: на самом деле их может быть бесконечное множество. Разложение на множители было проделано лишь для чисел Ферма с индексом до n = 11. Представление числа в виде произведения простых множителей является нелегкой задачей. Как мы позже покажем, эта трудность лежит в основе одного из самых популярных методов шифрования, используемых сегодня.

Леонард Эйлер

Не существует ни одной области классической математики, будь то дифференциальное и интегральное исчисление, дифференциальные уравнения, аналитическая и дифференциальная геометрия, теория чисел или теория рядов, в которой бы не появлялось имя швейцарского математика и физика Леонарда Эйлера (1707–1783). Он был одним из самых плодовитых математиков своего времени. После его смерти в Санкт-Петербурге его сочинения продолжают вызывать восхищение и регулярно переиздаются Санкт-Петербургской Академией наук. Швейцарская академия наук планирует опубликовать полное собрание его работ, которое составит около 90 томов.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _24.jpg

Банкнота 10 швейцарских франков 1997 г. выпуска с портретом Эйлера и изображениями гидравлической турбины, солнечной системы и света, проходящего через линзу. Все это иллюстрирует вклад Эйлера в математику.

Эйлер всегда проявлял особый интерес к простым числам. Он составил таблицу всех простых чисел от 1 до 100 000 и нашел формулы, которые позволяли ему получать невероятные количества таких чисел. Одной из наиболее интересных является следующая формула:

х2 + х + q,

которая генерирует простые числа для любых значений х, больших 0 и меньших q — 2.

Эйлер нашел все такие простые числа для = 2, 3, 5, 7, 11 и 17. В то время математика была экспериментальной, ее целью было получение практических результатов, поэтому строгие доказательства часто отсутствовали. Однако в отличие от Ферма Эйлер не скрывал своей работы. Если у него было доказательство, он публиковал его, а если факт приводился без доказательства, значит, оно не было найдено.

Работы Эйлера привели к важным изменениям в мире математики, вызвав медленный, но неумолимый сдвиг научной мысли. Среди многочисленных достижений Эйлера есть три, которые оказали решающее влияние на дальнейшие исследования в теории простых чисел: понятия функции, бесконечных сумм и мнимых величин.

Позже мы еще вернемся к ним.

Функции

Эйлер заложил основы того, что в последующие века будет называться математическим анализом. Именно он ввел обозначение функции, f(х), которое используется и в настоящее время. Функция работает как устройство, которое преобразует числа в другие числа в соответствии с установленным правилом. (Мы имеем в виду действительные функции действительного переменного.) Например, если правило гласит, что к каждому числу нужно прибавить определенное число, например, 3, то функция записывается следующим образом:

f(х) = x + 3.

Теперь функцию можно применить к любым значениям переменной:

f(1) = 1 + 3 = 4;

f(2) = 2 + 3 = 5;

f(24) = 24 + 3 = 27;

f(0,32) = 0,32 + 3 = 3,32.

Действительные функции действительного переменного ставят в соответствие каждому действительному числу другое действительное число. Например, функция f(x) = + 1 каждое значение х увеличивает в два раза и прибавляет единицу. Составим таблицу значений этой функции:

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _25.jpg

Эта таблица позволяет построить график функции по вышеуказанным координатам точек:

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _26.jpg

Это очень простой график, он представляет из себя прямую линию, построить которую можно всего по двум точкам. С другой стороны, функция вида f(х) = х2 будет иметь следующую таблицу значений:

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _27.jpg

И график этой функции уже не так легко построить:

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _28.jpg

Фактически, чем больше у нас точек, тем более точный график можно построить, но если выражение функции не является линейным, то есть если переменная х возводится в степень, большую единицы, графиком функции является кривая линия.

В некоторых случаях эта кривая известна, а в других она оказывается очень непредсказуемой и ее нельзя построить вручную. Одним из величайших достижений Эйлера является представление сложных функций в простых терминах.

Бесконечные суммы

Еще Эйлер для обозначения суммы, или «суммирования», ввел специальный символ, который используется и в современной математике. Это знак Σ — заглавная буква «сигма» греческого алфавита, а также первая буква слова «сумма».

Выражение суммирования записывается следующим образом:

Σi=5j=1i,

где есть переменная, в данном случае i, и индексы, показывающие, как эта переменная изменяется. В данном примере i изменяется от 1 до 5. Таким образом:

Σi=5j=1 i = 1 + 2 + 3 + 4 + 5;

Σi=3j=1(n + 1) = (1 + 1) + (2 + 1) + (3 + 1);

Σi=4j=1 n2 = 12 + 22 + 32 + 42.

Обычно запись выражения упрощают, указывая в качестве верхнего индекса лишь последнее значение переменной:

Σ5j=1 i = 1 + 2 + 3 + 4 + 5.

Это означает, что i меняется от 1 до 5.

Если верхний предел не является числом, то используется символ бесконечности, означающий, что сумма бесконечна. Например:

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _29.jpg

Хотя это может показаться странным, но существуют бесконечные суммы, результат которых является конечным числом. Ряды, имеющие такую сумму, называются сходящимися. Например, ряд

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _30.jpg

имеет конечную сумму, приблизительно равную 2. Так как члены ряда становятся все меньше и меньше, в какой-то момент каждый следующий член будет настолько мал, что его добавление ничего не изменит, и итоговая сумма будет конечным числом. Безусловно, это не совсем точное объяснение. Можно предположить, что ряд типа

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _31.jpg
Перейти на страницу:

Грасиан Энрике читать все книги автора по порядку

Грасиан Энрике - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Мир математики. т.3. Простые числа. Долгая дорога к бесконечности отзывы

Отзывы читателей о книге Мир математики. т.3. Простые числа. Долгая дорога к бесконечности, автор: Грасиан Энрике. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*