Никола Тесла (Человек, опередивший время) - Арсенов Олег Орестович (е книги .txt) 📗
Вот этот момент и подчеркивал Тесла до самой своей смерти, считая, что некоторые его секретные эксперименты и подтверждают новое физическое мировоззрение, в которое на равных входят мертвая материя и живой человек-наблюдатель. Следовательно, вполне возможен и взаимный переход мертвое-живое. Причем задача из сферы чистой теории переходит в инженерно-техническую плоскость. Подобная позиция выглядела слишком непривычной для позитивистского научного мышления, и те физики, с кем Тесла поделился своими планами, откровенно его высмеяли…
Надо сказать, что с момента создания в начале 1930-х годов впоследствии столь знаменитого Принстонского института высших исследований, где к началу Второй мировой войны собралась элита физиков-теоретиков, Теслу непреодолимо влекло туда, где он надеялся беспристрастно обсудить некоторые свои идеи и эксперименты. Увы, его желаниям не суждено было сбыться… Эмоционально глубоко ранимый, он очень тяжело переживал в общем-то вполне безобидные шутки над своими «заметками о глубинной сути квантовой природы вещества, эфира и излучения».
Последней его попыткой было вмешаться (экспериментальным образом!) в ход обсуждения знаменитого ЭПР-парадокса…
Квантовая частица как стоячая волна в эфире Теслы.
В 1935 году Эйнштейн и два его сотрудника Борис Подольский и Натан Розен опубликовали схему мысленного эксперимента, ставшего одним из самых знаменитых в истории физики и получившего название «парадокс Эйнштейна — Подольского — Розена», или просто ЭПР-парадокс. Смысл его состоял в проверке глубинного базиса квантовой механики — фундаментальной неопределенности положения микрообъекта, то есть существования в классическом смысле этого слова. Мир тьмы, мир неопределенности, ставящий под сомнение саму физическую реальность, гласил: знать все невозможно! Потому что ничего определенного не существует! Все размыто, искажено… В частности, мы не можем абсолютно точно (как в классической механике) одновременно узнать координаты и импульс (произведение массы на скорость) элементарной частицы. Либо вы точно фиксируете местоположение частицы, но ничего не можете сказать о ее перемещении, либо наоборот…
Квантовый объект — это не частица, и не волна, и даже ни то ни другое одновременно. Квантовый объект — это нечто третье, не равное простой сумме свойств волны и частицы, точно так же, как мелодия — больше, чем сумма составляющих ее звуков, а кентавр не простая сумма коня и человека, а нечто качественно новое. Это квантовое «нечто» не дано нам в ощущении, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет все-таки ее познать. Два дополнительных свойства квантовой реальности нельзя разделить, не разрушив при этом полноты и единства явления природы, которое мы называем, например, атомом, точно так же, как невозможно разрезать на две части кентавра, сохранив при этом в живых и коня, и человека.
«Неизбежность странного мира» — так давно, в самом начале 1960-х годов, назвал свою замечательную книгу о квантовых парадоксах блестящий научный популяризатор и писатель Д. С. Данин. Не будет преувеличением сказать, что сотни молодых людей выбрали замечательнейшую на земле профессию физика, прочитав эту захватывающую летопись становления новой науки:
«Не есть ли господство случая в микромире тоже только обманчивое зрелище, подобное тому, какое открылось под микроскопом шотландскому ботанику ровно за сто лет до открытия принципа относительности? Не лежит ли в недрах микромира под квантово-механическим уровнем движения элементарных частиц более глубокий и более тонкий уровень бытия материи? И не происходят ли там, в этой еще не изведанной глубине, однозначно причинные события, которые и определяют собой вероятностные законы микромира? Ах, если бы удалось хотя бы с помощью самых общих предположений спуститься до этого субквантово-механического уровня! Тогда, по мысли де Бройля и Давида Бома, физики снова увидели бы, как механизм случая, механизм статистических закономерностей заводится старой испытанной классической причинностью. (Совсем как в броуновском движении.)
Неужели никакого субквантово-механического уровня бытия материи не существует? Нет, он, несомненно, существует. Он не может не существовать, хотя пока в распоряжении экспериментаторов нет никаких лабораторных сведений о нем. Он не может не существовать по одному тому, что в мире элементарных частиц уже прощупываются явления, перед которыми становится в тупик квантовая физика. Уже возникла нужда в более общей и более глубокой теории, которая объяснила бы, почему существуют именно такие элементарные частицы материи, с которыми мы сегодня имеем дело, а не другие. Эта новая рождающаяся в наши дни элементарная механика обнимет механику квантовую, как свой случай. Процесс познания не имеет конца. Кто же усомнится в этом?»
Одна из главных загадок квантовой науки — физический смысл пси-функции, это так называемая волновая функция, которая описывает «размазанную в пространстве вероятность» локализации или, проще говоря, точного нахождения микрочастицы, например того же электрона. А главный загадочный вопрос здесь звучит очень даже странно: «Где же находится электрон, когда никто его не ищет или даже просто не думает о его местоположении?» Вот с ответа на этот вопрос и началась историческая полемика Эйнштейна и Бора. Эйнштейн считал, что электрон, как и любая нормальная микрочастица, в любой момент времени имеет свою точку пространства. А вот указать ее, действительно, точно нельзя в силу неполноты квантовой теории, предсказывающей все только вероятностно. Позиция Бора была принципиально иной. Он считал, что пока мы не интересуемся дислокацией микрочастицы, она в буквальном смысле растворена в координатном пространстве. И скажем, вероятностная лужица того же электрона намного превышает его эффективный диаметр.
Получается, что квантовые объекты ведут себя как самые настоящие микроскопические призраки, расплываясь в пространстве полупрозрачным ореолом, пока кто-либо не произнесет магического слова, подставив конкретные данные в пси-функцию! То есть только тогда мы сможем предсказать определенную траекторию в конкретной точке. Проверить это очень просто, надо только подставить мишень, и в момент попадания частица тут же локализуется, оставив точку, скажем, на фотопластинке. Этот опыт физики проводили уже множество раз, и формулы квантовой механики их ни разу не подвели. В каждом учебнике по квантовой механике подобное поведение микрообъектов разбирается на примере уже хрестоматийного двухщелевого эксперимента. Суть его проста: поскольку каждая частица имеет еще и волновую природу, то поток таких частиц, направленный на диафрагму с двумя щелями, напоминает череду волн, набегающих на плотину с двумя каналами, расположенными неподалеку друг от друга. От плотины через протоки разбегаются новые волны двумя перекрывающимися конусами. В тех местах, где колебания волн складываются, они накатываются на берег с удвоенной силой, а там, где впадина и горб волны гасят друг друга, поверхность спокойна. Подобный эксперимент со световыми волнами нарисует на берегу-экране картину сложения волн в виде чередующихся темных и светлых полос.
С какими только частицами не проводили подобные эксперименты физики! И результат всегда был один и тот же.
Пока все, в принципе, понятно. Но давайте предельно упростим наш опыт и выстрелим по мишени-диафрагме одной микрочастицей. Это уже довольно тонкий эксперимент, но вполне выполнимый. И здесь мы опять увидим интерференционную картину. Получается, что один электрон пролетал одновременно через два отверстия и наложился сам на себя.