Итоги тысячелетнего развития, кн. I-II - Лосев Алексей Федорович (электронная книга .TXT) 📗
Перейдем к додекаэдру.
Что касается додекаэдра, который, согласно самому Платону, близок к шару, то можно задать себе вопрос об отношении стороны пятиугольника и диаметра шара, в который он вписан. Согласно Г.Е.Тимердингу [278], это отношение как раз свидетельствует о наличии здесь золотого деления. Другими словами, весь додекаэдр буквально пронизан принципом золотого деления.
В геометрическом смысле рассуждения здесь простейшие. Соединив центр правильного пятиугольника с его вершинами, мы получаем пять равнобедренных треугольников; а проведя перпендикуляры из вершин этих треугольников на их основания, мы получаем десять прямоугольных треугольников определенного типа. Именно, половина каждой стороны пятиугольника в ее соотношении с проведенными нами радиусами как раз и образует собою золотое деление.
Другими словами, как заключает Г.Е.Тимердинг [279], сторона правильного пятиугольника представляет из себя гипотенузу прямоугольного треугольника, один из катетов которого равен радиусу описанной вокруг пятиугольника окружности; а другой катет равен стороне десятиугольника, вписанного в ту же окружность. Поэтому соотношение половины стороны правильного пятиугольника с радиусом описанной вокруг него окружности и представляет собой золотое деление.
Таким образом, закон золотого деления с достаточно большой точностью можно приписывать именно Платону в его космологическом и вообще эстетическом использовании пифагорейской пропорционально-числовой гармонии или, точнее говоря, находить принцип золотого деления в его теории правильных многогранников [280].
12. То же. Аристотель и аристотелики
Наш читатель, много раз вникавший в тексты Аристотеля, уже заранее знает и о необходимости для Аристотеля критиковать Платона, и о существенных недостатках этой критики. Платоновские многогранники Аристотель понимает чересчур абстрактно, именно как чисто геометрические построения; и при таком подходе к делу, конечно, нетрудно доказывать невозможность построения физических тел из чистой геометрии. Но, как мы видели, свои многогранники Платон вовсе не понимает чисто геометрически, а понимает в основном как физические структуры. Поэтому значительная часть аристотелевской критики основывается просто на известном недоразумении. С такой аристотелевской критикой платоновских правильных многогранников читатель может познакомиться по нашим старым трудам (АК, с. 186 – 192). Об аристотелевской критике звучащих космических сфер выше (часть седьмая, глава VI, §1, п. 9) мы уже имели случай упомянуть. Но аристотелевская критика интересна совсем в другом отношении.
Видный ученик Аристотеля Аристоксен (в самом конце IV века до н.э.), исходя из общеаристотелевской дистинктивно-дескриптивной тенденции, не удовлетворялся традиционными пифагорейскими музыкальными пропорциями. Он продолжал линию Архита с его более дробным делением гаммы, чем это было у традиционных пифагорейцев. Именно, кварту он делил на 60 равных частей, из которых первые 24 части и вторые 24 части образовывали по одной большой секунде, а остальные 12 частей – малую секунду. Но если такое деление проводить по всей октаве, то получалась система 12-ти полутоновых ступеней вроде нашей темперированной гаммы. Но тогдашним музыкантам, как исполнителям, так и слушателям, такая дробная система казалась слишком утонченной и изысканной, то есть слишком неестественной и слишком искусственной. Поэтому аристоксеновская терция оказалась только пророчеством новоевропейской темперации, а успехов в те времена совсем не имела. Как мы сказали выше (часть седьмая, глава VI, §1, п. 10), Архит на основании своего дробления кварты получал такие тетрахорды, как диатонический (тон, тон, полутон), хроматический (полтора тона, полутон, полутон) и энгармонический (два тона, четверть тона и четверть тона). Но, повторяем, большой популярностью такое дробление кварты не пользовалось.
13. То же. После Аристотеля
В III веке до н.э. так называемые каноники, а также Эратосфен из Кирены и Дидим проповедовали традиционную диатонику с тем или иным ее незначительным осложнением. И завершителем многовековой пифагорейской музыкальной гармонии считают Клавдия Птолемея (начало II века н.э.), у которого можно находить и много разного рода сведений из истории тональных делений.
14. Переход к принципу совершенства
Все рассмотренные нами типы числовой интерпретации гармонии у пифагорейцев мы уже предложили толковать как нечто единое и нераздельное, поскольку иначе выставляемая здесь теория гармонии рассыпалась бы на отдельные противоречащие теории. Но тогда возникает вопрос: а нельзя ли находить в античной философии такую теорию, которая бы вскрывала это единство в его существе? Такая теория в античности не только была, но также и весьма интенсивно формулировалась. Нужно только помнить, что для совмещения всех указанных противоречащих интерпретаций необходимо рассматривать их уже не во взаимоизолированном виде, но в их предельной обобщенности. И эта предельная обобщенность была последним и завершительным синтезом всей вообще античной философии гармонии, а значит, и всей синтетической конститутивной терминологии. Это была теория совершенства, в которой все эти противоречия предельно совпадали в едином целом.
Переходим к изучению этой античной терминологии совершенства.
§2. Совершенство
1. Игра, вечность и совершенство
а) Античный опыт совершенства весьма оригинален. Это было и не физическое, и не моральное, и не эстетическое, и не общественное, и не просто онтологическое совершенство. Ведь античность, как мы знаем, исходила из интуиции вещи. Но вещь, взятая в собственном виде, то есть не как личность или субъект вообще, есть ведь не что иное, как стихия, случайность. Правда, вещь, из которой исходили в античности, есть вещь оформленная, но это было только вещественным оформлением, и разум и смысл этого оформления не выходили за пределы самой вещественности. А это, в свою очередь, значит, что в античности оформилась и абсолютизировалась сама же стихийность, именно – ее случайность, именно – ее фактическая судьба. Космос мыслился не стихийно и был предельно оформлен, однако ему предшествовал стихийный хаос, из которого он происходил. И кроме того, космос в нынешнем его оформленном состоянии отнюдь не мыслился вечным. Как он до поры до времени молодел и как он до поры до времени был старым, точно так же рано или поздно наступало его старение, а затем и самая настоящая его гибель. Это не было гибелью космоса в его стихийной основе, но было гибелью только данного его и вполне временного оформления. Космос переходил в хаос, а хаос снова переходил в космос. Но тут-то и возникали те три особенности античного понимания совершенства, которые так специфичны для античности и которые так резко противостоят пониманию совершенства во всех последующих культурах.
б) Во-первых, та космическая стихийность, которую ощущала античность, была вечной. Точнее сказать, вечностью было периодическое чередование хаоса и космоса. Во-вторых, эта вечная стихийность была основана сама на себе, так как ничего другого, кроме нее, вообще не существовало. Если космическая стихийность вмещала в себя решительно все, то, следовательно, уже ровно ничего не оставалось другого, кроме нее; и уж тем более не было ничего такого, что могло бы обосновать эту стихийность со стороны. Но если космическая стихийность была сама для себя основой, то тем самым она была сама для себя не только реальным бытием, но и полным, окончательным идеалом. Другими словами, вечное совпадение хаокосмических противоречий было не чем иным, как игрой стихии с самой собой. И так как это было и последней реальностью и последней предельностью, то это и нужно считать тем, что античные мыслители трактовали как совершенство. Этот предел всех хаокосмических моментов и есть тот третий принцип античного совершенства, который и составляет его окончательную специфику.