Да сгинет смерть! Победа над старением и продление человеческой жизни - Курцмен Джоэль (книги регистрация онлайн бесплатно TXT) 📗
Примерно в то же время в Англии производились исследования в области миоэлектричества ("миос" по-гречески "мышца"), т. е. электрических токов, возникающих на поверхности мышцы, когда она получает через нерв импульс, вызывающий сокращение. Это привело к созданию электрических сенсоров, которые точно измеряли электрический заряд, возникающий на поверхности мышцы во время сокращения, и усиливали его до величины, достаточной, чтобы двигать искусственную бионическую конечность.
Появление пьезоэлектрических сенсоров для измерения давления и миоэлектрических сенсоров, способных ощущать сокращения мышц, в сочетании с электронными схемами, позволяющими превратить движения руки в движения манипуляторов, дало возможность сконструировать бионическую руку, способную чувствовать давление на "пальцах" и точно реагировать на электрические импульсы, возникающие в культе человека. Такую руку вполне можно было бы сконструировать, если бы электронное оборудование манипуляторов в 50-х годах не занимало несколько комнат, а движения не производились бы за счет мощных гидравлических насосов весом в несколько тонн.
В 1952 г. восьмилетняя Карен Мак-Киббен заболела очень тяжелой формой полиомиелита, после чего у нее были парализованы руки и ноги. Ее отец, Джозеф Мак-Киббен, физик-ядерщик, работавший на государственной службе в Лос-Анджелесе, решил попробовать некоторые методы, разработанные КАЭ, пытаясь вернуть дочери способность двигать руками. В сотрудничестве с д-ром Верноном Никкелем, хирургом-ортопедом из Протезного института Ранчо де Лос Амигос в Лос-Анджелесе, где велась большая работа по созданию искусственных конечностей, Мак-Киббен сконструировал пневматическую мышцу. Она представляла собой трубку, сплетенную из лески наподобие китайской объемной головоломки, что позволяло ей сжиматься и растягиваться, как настоящей мышце. В трубку Мак-Киббен поместил узкий, не пропускающий воздуха баллон. Когда баллон наполнялся углекислым газом, трубка становилась толще и короче, совсем как сократившаяся мышца.
Это чрезвычайно простое и легко изготовляемое приспособление легло в основу двигателя бионических конечностей в 50-х годах. Баллоны, заключенные в сетку из тонкой проволоки, наполнялись углекислым газом, хранившимся в небольшом цилиндре. Когда требовалось сократить мышцу, газ быстро заполнял баллон; для ее расслабления открывался специальный клапан, и газ выходил наружу. К сожалению, это был слишком шумный и громоздкий протез, к тому же годился он только для тех, кто не мог двигать руками, а не для тех, у кого руки были ампутированы.
Но с тех пор появились новые достижения. Исследования космоса потребовали такой миниатюризации электронных приборов, что все электронное оборудование, во время первых опытов КАЭ занимавшее несколько комнат, теперь легко размещалось внутри легкой пластиковой бионической руки. Появились и крохотные электромоторы, развивающие значительную мощность при потреблении очень малых количеств электроэнергии. Все эти приборы в сочетании с электрическими и пьезоэлектрическими сенсорами позволили ученым сконструировать настоящую бионическую руку.
Рейд Хилтон, 24-летний мастер каратэ из Санта-Ана (Калифорния), потерял правую руку ниже локтя в автомобильной катастрофе. На его счастье, группа ученых в госпитале Ранчо де Лос Амигос, возглавляемая Вертом Муни, только что закончила конструировать образец бионической руки весом в 3,2 кг, которая приводилась в движение перезаряжаемым электрическим аккумулятором и крохотными моторами, помещенными внутри руки. Рука, которую Хилтону прикрепили в 1975 г., показывала на динамометре силу захвата 16 кг при средней цифре для мужчин 10 кг. Связанная электрическими контактами с мышцами предплечья, эта рука действует почти как настоящая, выполняя практически все движения, вплоть до таких тонких, как собирание мелких предметов с пола или завязывание шнурков на ботинках, — не говоря уже о более широких движениях, принятых в каратэ. В кончиках пальцев имеются пульсирующие сенсоры, которые посылают сигналы обратной связи, предотвращая слишком сильное давление на предметы. В 1976 г. Муни сказал, что в ближайшие пять лет может быть налажено промышленное производство таких рук для всех, кто в них нуждается.
Нововведения в области бионических протезов поразительны, но в чисто количественном отношении они не идут ни в какое сравнение с тем каталогом искусственных "запчастей", которые могут быть использованы при ремонте поврежденных "деталей" человеческого организма. От сустава большого пальца на ноге до черепной крышки — таков список деталей, которыми можно заменить кости, суставы, мышцы и т. п. Причем в некоторых случаях они функционируют лучше природных.
Бионические суставы и кости
В артропластике — пластической хирургии суставов — бионические заменители нашли широкое применение. Повреждения суставов и костей очень часто возникают в результате переломов, артрита, бурсита и целого ряда других деформирующих заболеваний.
Первые эксперименты с бионическими суставами в начале 50-х годов сводились к следующему: на верхнем конце бедренной кости, обработанном в форме шара, крепилась искусственная головка из нержавеющей стали, которая должна была входить в углубление тазобедренного сустава. Но добиться точного соответствия стального шара и углубления очень трудно, поэтому такие операции не всегда удавались. В тех же случаях, когда в тазовых костях также имелись изменения, этот метод помочь не мог. Зачастую стальная головка отламывалась от бедренной кости в результате износа.
Но в 1954 г. англичанину Джону Чарнли из Райтингтонского госпиталя в Уигане пришла в голову мысль изготовить цельный сустав из тефлона и стали, который позволил бы хирургу заменить всю систему сустава. Чарнли надеялся, что такой сустав придет на помощь не только тем больным, у кого сломана головка бедра, но и тем, у кого разрушена вертлюжная впадина. При полной замене тазобедренного сустава искусственным отпадает проблема точной подгонки: бионический сустав предназначен для замены обеих частей тазобедренного сустава, и его можно будет отлично подогнать перед вживлением в отсутствие больного.
Тазобедренный сустав Чарнли очень точно копировал природную модель, разве что головка, сделанная из нержавеющей стали, и впадина, изготовленная из тефлона, делались меньших размеров во избежание трения. Сустав приклеивался к костям акриловым клеем. Чарнли надеялся, что его детище прослужит не меньше десяти лет — эта цифра объяснялась тем, что больным, нуждающимся в искусственном суставе, обычно около 60 лет, они нуждаются в протезах, которые выдержали бы до конца их жизни, не требуя дополнительной операции. Однако стендовые испытания на прочность показали, что тефлон сможет выдержать от силы два-три года.
В 1962 г. один из техников Чарнли случайно обнаружил, что полиэтилен, из которого делают все на свете — от детских игрушек до корпусов автомобилей, — за три недели изнашивается меньше, чем тефлон за один день. В том же году Чарнли начал заменять тазобедренные суставы искусственными, сделанными из головок нержавеющей стали и полиэтиленовых вертлюжных впадин. С тех пор он осуществил свыше 5000 операций и настолько отшлифовал свою технику, что теперь может сделать в день шесть операций по замене сустава, причем каждая операция занимает около часа.
Бионические запасные части были разработаны и для других суставов. Для суставов рук, пальцев, большого пальца на ноге используется в основном силастик — силиконовый пластик. Для искусственных запястий, коленных чашечек, локтевых суставов, плеч и лодыжек применяются разные материалы: силастик, нержавеющая сталь, кобальт, хром, полиэтилен и другие сплавы и пластики.
Суставы часто трудно воспроизвести, потому что они несут разнообразные нагрузки. Голеностопный сустав, например, состоит из шести косточек, рассчитанных на то, чтобы сустав сгибался и растягивался одновременно в нескольких направлениях, давая нам возможность не только ходить и бегать по ровному месту, но и карабкаться в гору. Кроме того, голеностопный сустав призван уравновешивать положение ступни. Когда вы поднимаетесь по лестнице, он испытывает иные нагрузки, чем во время танцев или ходьбы по песку.