Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗
Подведем итог. В 1964 г. конечные стадии эволюции звезды, которая в результате схлопывания превращается в черную дыру, выглядели следующим образом (во многом благодаря стараниям Уилера, который считал эти исследования основным делом своей жизни):
1. Известно решение уравнения Эйнштейна, предложенное Оппенгеймером и Снайдером для звезды идеальной формы (в том числе для идеальной сферы). Из этого решения следует, что в центре черной дыры возникает сингулярность с бесконечно большими приливными силами гравитации. Эта сингулярность захватывает, разрушает и проглатывает абсолютно все, что попадает в черную дыру.
2. Известно также другое решение уравнения Эйнштейна (частный случай решения Райсснера — Нордстрема) для звезды, имеющей не вполне идеальную форму или сферическую форму, но при этом еще электрический заряд. Глубоко внутри черной дыры такая звезда отпочковывается от нашей Вселенной, прикрепляется к другой вселенной (или к отдаленной области нашей собственной Вселенной) и там взрывается.
3. Было далеко не ясно, какое из этих двух решений (а возможно, ни то и ни другое) «устойчиво по отношению к малым, случайным возмущениям» и, следовательно, может иметь место в реальной Вселенной.
4. В то же время Халатников и Лифшиц утверждали, что сингулярности всегда неустойчивы по отношению к малым возмущениям и поэтому они никогда не возникают. Следовательно, сингулярность Оппенгеймера — Снайдера никогда не может возникнуть в нашей реальной Вселенной.
5. По поводу этого утверждения Халатникова и Лифшица среди физиков существовал некий скептицизм, по крайней мере, в Принстоне. Возможно, он был отчасти вызван желанием Уилера, чтобы эти сингулярности существовали в природе, ибо они могли стать вожделенным местом для слияния общей теории относительности и квантовой механики.
1964-й год стал переломным моментом. В этом году Роджер Пенроуз революционизировал математические инструменты, которыми мы с тех пор пользуемся для анализа свойств пространства-времени. Его революция была настолько важной и оказала настолько сильное влияние на поиск «священного Грааля» Уилера, что я отвлекусь от основного повествования и уделю несколько страниц в книге рассказу о Пенроузе и его революции.
Роджер Пенроуз вырос в семье медиков в Британии. Его мать была врачом, отец — знаменитым профессором генетики человека в Лондонском университетском колледже. Родители Роджера хотели, чтобы, по крайней мере, кто-нибудь один из четверых детей пошел по их следам и занялся медицинской карьерой. Старший брат Роджера, Оливер, совершенно не оправдал их надежд, с самого раннего возраста он намеревался заниматься физикой (и на самом деле стал одним из ведущих специалистов в мире по статистической физике, в области изучения статистических свойств большого числа взаимодействующих атомов). Младший брат Роджера, Джонатан, тоже не собирался становиться врачом; единственное, чем он хотел заниматься, — игрой в шахматы (позже он стал чемпионом Британии по шахматам и оставался им семь лет подряд). Младшая сестра, Ширли, была еще слишком молода, когда Роджер выбирал себе карьеру, и не показывала склонности ни к какому конкретному занятию. (Впоследствии именно она стала врачом и порадовала своих родителей.) Становится понятно, почему именно на Роджера родители возлагали основные надежды.
Когда Роджеру было шестнадцать лет, он вместе с другими учениками класса прошел собеседование у директора школы. Нужно было решать, какие предметы выбрать в качестве основных на последние два года, перед тем как поступать в колледж. «Я люблю математику, химию и биологию», — сказал он директору. «Невозможно. Нельзя соединить биологию с математикой. Либо то, либо другое», — заявил директор. Роджеру была более дорога математика. «Хорошо, я займусь математикой, химией и физикой», — сказал он. Когда Роджер пришел в тот вечер домой, его родители были в ярости. Они обвинили сына в том, что он связался с плохой компанией. Биология совершенно необходима для медицины; как он мог от нее отказаться?
Роджер Пенроуз (1964). [Фото сделано Годфри Арджентом для Британской Национальной портретной Галереи и Лондонского Королевского общества. Предоставлено Годфри Арджентом]
Через два года Роджер решил, чем он будет заниматься в колледже. Роджер вспоминает, как он сказал, что хочет поехать в Лондон, поступить в университетский колледж и получить степень по математике. «Мой отец был против. Математика, утверждал он, хороша для тех, кто больше ничего не умеет делать, но карьеры из нее не сделаешь». Роджер настаивал на своем, и отец добился, чтобы его протестировал один из преподавателей математики, работавший в колледже. Математик пригласил юношу на собеседование и предупредил его, что, скорее всего, он решит лишь одну или две из предложенных задач. Собеседование должно было продолжаться целый день. Когда же Роджер за несколько часов правильно решил все двенадцать задач, отец сдался. Так Роджер занялся математикой.
Вначале он не собирался применять математический аппарат к физике. Его интересовала чистая математика. Но потом все изменилось.
Соблазн начался в 1952 г., когда Роджер, тогда студент четвертого курса Лондонского университетского колледжа, прослушал курс радиолекций по космологии, которые читал Фред Хойл. Лекции пленили его и побудили обратить внимание на физику, но вместе с тем немного смутили. Кое-что из того, о чем говорил Хойл, просто не могло иметь смысла! Старший брат Роджера, Оливер, изучал физику. Роджер решил навестить своего брата, к которому надо было ехать в Кембридж на поезде. В конце того же дня за обедом в Кингсвудском ресторане Роджер обнаружил, что один из коллег Оливера, Деннис Сиама, занимается теорией стационарной Вселенной Бонди — Голда-Хойла. Замечательно! Возможно, Сиама поможет Роджеру разрешить его сомнения. «Хойл говорит, что, в согласии со стационарной теорией, удаленные галактики не будут видны в расширяющейся Вселенной; они выйдут за пределы наблюдаемой части нашей Вселенной. Я не понимаю, как это может произойти». Роджер вынул ручку и стал рисовать на салфетке пространственно-временную диаграмму. «Из этой диаграммы следует, что удаляющаяся галактика будет тускнеть и краснеть, но все-таки не исчезнет совершенно. Что в моих рассуждениях неправильно?»
Сиама был поражен. Он никогда прежде не пользовался пространственно-временными диаграммами в такого рода рассуждениях. Пен-роуз оказался прав, а Хойл, очевидно, ошибался. И, что более важно, младший брат Оливера был феноменально способен!
После этого случая Деннис Сиама начал заниматься с Роджером Пенроузом по специальной программе, которую он впоследствии использует в занятиях со своими студентами в 1960-х годах (Стивеном Хокингом, Джорджем Эллисом, Брэндоном Картером, Мартином Рисом и др.; см. главу 7). Он вовлекал Пенроуза в длительные дискуссии, проводил с ним многочасовые занятия по животрепещущим проблемам физики. Сиама знал все обо всем, что происходило в физике; он заразил Пенроуза своим энтузиазмом и возбудил в нем интерес к этой науке. Вскоре Роджер был полностью увлечен. Впоследствии он защитит докторскую диссертацию по математике, но отныне именно стремление понять Вселенную будет руководить его исследованиями. Следующие несколько десятков лет он проведет, отдавая дань увлечения математике и физике одновременно.
* * *
Новые идеи часто посещают нас в самые неподходящие моменты, когда мы их меньше всего ожидаем. Мне кажется, они возникают в нашем подсознании, а подсознательная работа эффективнее всего совершается, когда сознание не очень активно. Примером тому может служить открытие, сделанное Хокингом в 1970 г. в процессе его подготовки ко сну, когда он понял, что площадь поверхности горизонта событий черной дыры всегда возрастает (глава 12). Другой пример — открытие, сделанное Роджером Пенроузом и изменившее наше понимание процессов, происходящих внутри черной дыры.