Mybrary.info
mybrary.info » Книги » Научно-образовательная » Астрономия и космос » Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗

Тут можно читать бесплатно Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗. Жанр: Астрономия и космос. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Халатников и Лифшиц пришли к этим выводам в 1961 г., когда начали исследовать с точки зрения законов Эйнштейна проблему устойчивости сингулярности относительно малых возмущений. Другими словами, они поставили по отношению к сингулярностям тот же вопрос, что мы поставили в главе 7 по отношению к черным дырам: если, решая уравнение поля Эйнштейна, слегка изменить (случайным образом) форму схлопывающейся звезды или Вселенной, а также ее скорость, плотность и давление составляющего ее вещества и при этом наделить вещество малым случайным гравитационным излучением, то как эти изменения (возмущения) повлияют на конечный результат коллапса?

На горизонт событий черной дыры, как мы видели в главе 7, возмущения не повлияют. Возмущенная, коллапсирующая звезда также формирует горизонт событий, и хотя вначале он деформирован, все его деформации быстро исчезнут, и останется черная дыра «без волос». Другими словами, горизонт событий устойчив по отношению к малым возмущениям.

Что касается сингулярности в центре черной дыры или в момент Большого хруста Вселенной, то из расчетов Халатникова и Лифшица следовало, что при схлопывании малые случайные возмущения должны расти, по сути дела, они становятся настолько большими, что сингулярность вообще не сможет образоваться. Предположительно (с уверенностью этого утверждать нельзя), возмущения остановят схлопывание (взрыв, направленный внутрь) и превратят его во взрыв, направленный вовне.

Как возмущения могут изменить направление взрыва? Расчеты Халатникова — Лифшица не касаются физического механизма происходящего процесса. Однако некоторые предположения о нем можно сделать, исходя из законов гравитации Ньютона, с которыми проще работать, чем с законами Эйнштейна. Например (см. рис. 13.3), если силы гравитации в коллапсирующей звезде достаточно слабы, так что можно воспользоваться законами Ньютона, и если можно пренебречь давлением звезды, тогда вследствие малых возмущений атомы со всех сторон будут смещаться по направлению к центру звезды. Большая часть атомов не попадет точно в центр, и они начнут удаляться от центра, в результате чего коллапс сменится взрывом. Хотя внутри черной дыры ньютоновские законы гравитации применять нельзя, представлялось возможным, что в результате действия некоторых механизмов, аналогичных рассмотренному выше, схлопывание может превратиться во взрыв.

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - i_133.png

13.3. Один из механизмов, в результате которого схлопывание звезды может смениться ее взрывом. Силы гравитации достаточно слабы, что дает возможность применения ньютоновских законов, и внутреннее давление мало, т. е. им можно пренебречь. При небольшой деформации («возмущении») схлопывающейся звезды атомы в ней смещаются к центру, пролетают мимо него и начинают удаляться от центра

* * *

Я начал работать в составе научно-исследовательской группы Джона Уилера в 1962 г., на выпускном курсе. Незадолго до этого Халатников и Лифшиц опубликовали свои расчеты, а Лифшиц вместе с Ландау издали знаменитую книгу «Теория поля», которая содержала вывод об отсутствии сингулярности. Я помню, как Уилер поставил перед нами задачу проверить эти расчеты. Он утверждал, что если они верны, выводы трудно будет переоценить. Однако расчеты были очень сложными и длинными, а опубликованных данных явно не хватало, чтобы мы могли полностью их проверить; к тому же Халатников и Лифшиц находились в Советском Союзе, за железным занавесом, и мы не могли сесть с ними рядом и обсудить все детали.

Тем не менее, мы постепенно начали считать, что коллапсирующая Вселенная по достижении некоторого очень малого размера может, как упругая пружина, «разжаться» и начать очередное расширение в новом «Большом взрыве». Так же и коллапсирующая звезда, после провала под горизонт событий может начать «разжиматься» и взорваться.

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - i_134.png

13.4. Возможная эволюция звезды, коллапсирующей с образованием черной дыры (далее в этой главе будет показано, что этот сценарий весьма маловероятен). Восемь диаграмм, от (а) до (з), представляют собой последовательные этапы эволюции звезды и соответствующую геометрию пространства. Звезда начинает коллапсировать в нашей Вселенной (а) и превращается в черную дыру, вокруг которой формируется горизонт событий (6). Затем глубоко внутри черной дыры от нашей Вселенной отпочковывается область пространства, содержащая звезду, и формирует маленькую закрытую вселенную, которая ни с чем больше не связана (в). Эта закрытая вселенная движется через гиперпространство (г, д), доходит до другой большой вселенной и прикрепляется к ней (е). После этого звезда взрывается, и этот взрыв происходит уже в другой вселенной (ж, з)

Чем может закончиться такой взрыв? Очевидно, звезда не может вновь появиться из-под горизонта событий. Законы гравитации Эйнштейна запрещают чему бы то ни было (за исключением виртуальных частиц) вылететь из-под горизонта. Однако оставалась еще одна возможность: звезда может взорваться в другой области нашей Вселенной или даже в другой вселенной.

На рис. 13.4 показан коллапс звезды и пришедший ему на смену взрыв. Каждая диаграмма на этом рисунке изображает искривленное пространство в нашей Вселенной, а также в другой вселенной, в виде двумерных поверхностей, находящихся в гиперпространстве более высокой размерности. [Отметим, что гиперпространство — это плод воображения физиков: мы, люди, обречены жить всегда в нашей собственной Вселенной (или в другой вселенной, если сможем туда выбраться); мы никогда не сможем выбраться в окружающее гиперпространство или получить оттуда какие-либо сигналы. Гиперпространство нужно нам только как вспомогательное средство для визуализации кривизны пространства вокруг звезды, коллапсирующей в черную дыру, и для визуализации процесса коллапса звезды в нашей Вселенной и последующего ее взрыва в другой вселенной.]

Две вселенные на рис. 13.4 подобны двум островам в океане, а гиперпространство — омывающий их океан. Острова не соединяются между собой сушей; точно так же вселенные не соединены друг с другом пространством.

На диаграммах рис. 13.4 изображена последовательная эволюция звезды. Звезда начинает коллапсировать в нашей Вселенной (а). Она превращается в черную дыру, вокруг черной дыры образуется горизонт событий, и коллапс продолжается (б). Вещество в звезде сжимается настолько, что пространство вокруг нее искривляется и замыкается, образуя маленькую закрытую вселенную, напоминающую воздушный шар (в, г); эта новая маленькая вселенная отпочковывается от нашей Вселенной и начинает передвигаться самостоятельно в гиперпространстве. (Нечто похожее может произойти и на острове в океане, если туземцы построят лодку и захотят отправиться в плавание по океану.) Отпочковавшаяся вселенная со звездой внутри движется от нашей большой Вселенной к другой большой вселенной (г, д) (как лодка плывет от одного острова к другому). Маленькая вселенная достигает другой большой вселенной (е) (как лодка, которая пристает к берегу другого острова), расширяется и извергает из себя звезду. Наконец, звезда взрывается в другой вселенной (ж, з).

Я понимаю, что все это звучит как чистая научная фантастика. В свое время черные дыры явились прямым следствием решения Шварцшильда, полученного для уравнения поля Эйнштейна (глава 3); точно так же предложенный сценарий эволюции — непосредственный вывод из другого решения уравнения Эйнштейна, решения, найденного Гансом Райсснером и Гуннаром Нордстремом в 1916–1918 гг., но не понятого ими до конца. В 1960 г. ученики Уилера, Дитер Брилл и Джон Грейвс, раскрыли физический смысл решения Райсснера — Нордстрема. Вскоре стало ясно, что это решение с небольшими изменениями можно применить для описания коллапсирующей и взрывающейся звезды (рис. 13.4). Такая звезда отличается от звезды Оппенгеймера-Снайдера только одним существенным моментом: она электрически заряжена, и при ее сжатии формируется сильное электрическое поле, которое некоторым образом причастно к взрыву, происходящему со звездой в другой вселенной.

Перейти на страницу:

Торн Кип читать все книги автора по порядку

Торн Кип - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Черные дыры и складки времени. Дерзкое наследие Эйнштейна отзывы

Отзывы читателей о книге Черные дыры и складки времени. Дерзкое наследие Эйнштейна, автор: Торн Кип. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*