Искусственный интеллект. Этапы. Угрозы. Стратегии - Бостром Ник (книги читать бесплатно без регистрации TXT) 📗
Современные системы распознавания речи, основанные на статистических методах вроде скрытых марковских моделей, являются довольно точными для практического использования (с их помощью были созданы некоторые начальные фрагменты этой книги). Персональные цифровые помощники (например, Siri — приложение Apple) реагируют на голосовые команды, могут отвечать на простые вопросы и выполнять распоряжения. Повсеместно распространено оптическое распознавание рукописного и машинописного текста — на нем основаны, в частности, приложения для сортировки почты и оцифровки исторических документов66.
До сих пор остаются несовершенными системы машинного перевода, тем не менее для определенных целей они вполне пригодны. На стадии ранних версий, в которых использовался метод КИИ и которые основывались на правилах, был создан принцип кодировки в ручном режиме для грамматик всех естественных языков — причем работа проводилась силами самых высококвалифицированных лингвистов. Новые системы основаны на статистических методах машинного обучения, которые автоматически выстраивают статистические модели на основе наблюдаемых ими закономерностей использования слов и фраз. Программы выводят параметры этих моделей, анализируя корпус текстов на двух языках. Такой подход позволяет не привлекать лингвистов, а программисты, разрабатывающие эти системы, могут даже не владеть языками, с которыми им приходится иметь дело67.
Системы распознавания лиц за последнее время были настолько усовершенствованы, что сейчас ими успешно пользуются пограничные службы в Европе и Австралии. Автоматическая идентификационная система работает в Госдепартаменте США, с ее помощью в процессе выдачи виз обрабатывается более семидесяти пяти миллионов фотографий в год. В системах наблюдения применяются все более совершенные методы ИИ и новейшие технологии по извлечению информации, с помощью которых проводят интеллектуальный анализ речевых, текстовых и видеоматериалов — основная часть их привлекается из общемировых коммуникационных сетей и гигантских центров сбора и обработки данных.
Автоматическое доказательство теорем и решение уравнений стало настолько общим местом, что уже не воспринимается как разработка искусственного интеллекта. Устройства для решения уравнений встроены в научные компьютерные программы, например систему Mathematica. Формальные методы проверки, в том числе системы автоматического доказательства теорем, повсеместно используются производителями микропроцессоров для проверки поведения схемы перед запуском в производство.
Американскими военными и разведывательными ведомствами широко и успешно внедряются так называемые боевые роботы — саперы для нахождения и обезвреживания бомб и мин; беспилотные летательные аппараты, предназначенные как для разведки, так и для боевых действий; другие автоматические виды вооружений. Сегодня эти устройства в основном управляются дистанционно операторами-специалистами, однако неустанно ведется работа над расширением их автономной деятельности.
Большой успех достигнут в области интеллектуального планирования и снабжения. В ходе операции «Буря в пустыне» в 1991 году была развернута система DART для обеспечения автоматизированного планирования поставок и составления графиков перевозок. Программа оказалась исключительно эффективной: по сводкам Агентства по перспективным оборонным научно-исследовательским разработкам США (Defense Advanced Research Projects Agency in the United States, DARPA), она одна окупила тридцатилетнее финансирование Министерством обороны работ в области ИИ68. Сложные программы календарного планирования и тарификации используются для систем бронирования авиабилетов. Компании активно применяют самые разные методы ИИ для контроля складских запасов. Автоматические системы телефонного бронирования и линии поддержки, соединенные с программами распознавания речи, способны провести несчастного потребителя через лабиринт взаимосвязанных вариантов выбора.
Технологии искусственного интеллекта лежат в основе многих интернет-сервисов. Общемировой трафик электронной почты проверяется специальным программным обеспечением — причем байесовская фильтрация спама, несмотря на постоянные усилия спамеров приспособиться и обойти защиту, в основном справляется с задачей и держит оборону. Электронные программы, используя компоненты ИИ, обеспечивают безопасность операций по банковским картам: отвечают за их автоматическое одобрение или отклонение и постоянно отслеживают действия по счету с целью обнаружить малейшие признаки мошенничества. Системы поиска информации также активно используют машинное обучение. А поисковая система Google, без сомнения, представляет собой величайшую из когда-либо созданных систем искусственного интеллекта.
Здесь стоит подчеркнуть, что граница между искусственным интеллектом и обычным программным обеспечением определена не очень четко. Некоторые из перечисленных выше программ могли бы скорее считаться приложениями многофункциональных программных обеспечений, нежели интеллектуальными системами, — тут невольно снова вспомнишь слова Маккарти, что «стоит системе нормально начать работать, как ее сразу перестают называть искусственным интеллектом». Для наших целей важнее обратить внимание на другое различие: есть системы, у которых имеется ограниченный набор когнитивных способностей (неважно, относятся они к ИИ или нет), и есть системы, обладающие широкоприменимыми инструментами для решения общих задач. В основном все используемые сейчас системы относятся к первому типу — узкодиапазонному. Однако многие из них содержат компоненты, способные либо сыграть роль в создании будущего искусственного интеллекта, который будет отличаться развитым общим уровнем развития, либо стать его частью, — это такие компоненты, как классификаторы, алгоритмы поиска, модули планирования, решатели задач и схемы представлений.
Системы искусственного интеллекта качественно работают еще в одной области, где ставки очень высоки, а конкуренция слишком жестока, — это мировой финансовый рынок. Автоматизированные системы торговли акциями широко используются крупными инвестиционными банками. И хотя некоторые из них всего лишь дают возможность автоматизировать исполнение заказов на покупку и продажу, выставленных управляющей компанией, другие реализуют сложные торговые стратегии, способные приспосабливаться к меняющимся условиям рынка. Чтобы изучать закономерности и тенденции фондового рынка, определять зависимость динамики котировок от внешних переменных, таких как, например, ключевые позиции в сводках финансовых новостей, — для всего этого в аналитических системах используется большой набор методик интеллектуального анализа данных и временных последовательностей. Новые потоковые котировки, выпускаемые агентствами финансовой информации, специально отформатированы под интеллектуальные автоматизированные системы. Другие системы специализируются на поиске возможностей совершать арбитражные операции либо на определенном рынке ценных бумаг, либо одновременно на нескольких рынках, либо с помощью алгоритмического высокочастотного трейдинга[6], целью которого является получение прибыли на незначительных колебаниях цен в пределах нескольких милисекунд (на таких временных интервалах начинают играть роль задержки в поступлении информации даже в оптоволоконных сетях, где она распространяется со скоростью света, и преимущество получают те, чьи компьютеры находятся в непосредственной близости от биржи). На долю алгоритмических высокочастотных трейдингов приходится более половины оборота фондового рынка США69. Существует мнение, что ответственность за так называемый мгновенный обвал фондовых индексов 6 мая 2010 года лежит именно на алгоритмической торговле (см. врезку 2).
ВРЕЗКА 2. «МГНОВЕННЫЙ ОБВАЛ» 2010 ГОДА
К полудню 6 мая 2010 года американский фондовый рынок уже упал на 4% на беспокойстве по поводу европейского долгового кризиса. Крупный игрок (группа взаимных фондов) инициировал в 14:32 алгоритм продажи для реализации большого количества фьючерсных контрактов E-Mini S&P 500 по цене, привязанной к показателю изменения ликвидности биржевых торгов. Эти контракты, приобретенные с помощью алгоритмических высокочастотных трейдингов, были запрограммированы быстро закрывать свои временные длинные позиции путем продажи контрактов другим игрокам. Поскольку спрос со стороны инвесторов, ориентирующихся на фундаментальные показатели, снизился, игроки алгоритмического трейдинга начали продавать фьючерсы E-Mini другим игрокам алгоритмического трейдинга, которые, в свою очередь, продавали их третьим таким же игрокам, создавая, таким образом, эффект «горячей картошки», которую пытаются «скинуть» как можно быстрее, — этот эффект раздувал объемы торгов, что было интерпретировано алгоритмом продажи как показатель высокой ликвидности. Поскольку игроки начали еще быстрее сбрасывать друг другу E-Mini, на фондовом рынке возник настоящий порочный круг. В какой-то момент игроки начали просто выводить средства, еще больше повышая ликвидность на фоне продолжающегося падения цен. Сделки по E-Mini были приостановлены в 14:45 автоматическим прерывателем — специальной программой, контролирующей неожиданное и чрезмерное движение цен акций на бирже. Буквально через пять секунд торги возобновились, при этом цены стабилизировались и вскоре отыграли большую часть падения. Но в течение этих критических минут с рынка был «смыт» триллион долларов, поскольку значительное число сделок прошло по абсурдным ценам: акция могла продаваться и за один цент, и за 100 тысяч долларов. После того как торги закончились, состоялась встреча представителей бирж и регулирующих органов, на которой было принято решение отменить все сделки, исполненные по ценам, отличающимся от докризисного уровня на 60% и более. Договаривающиеся стороны сочли эти цены «явно ошибочными», а потому — в соответствии с существующими биржевыми правилами — подлежащими отмене задним числом)70.