Mybrary.info
mybrary.info » Книги » Документальная литература » Публицистика » Искусственный интеллект. Этапы. Угрозы. Стратегии - Бостром Ник (книги читать бесплатно без регистрации TXT) 📗

Искусственный интеллект. Этапы. Угрозы. Стратегии - Бостром Ник (книги читать бесплатно без регистрации TXT) 📗

Тут можно читать бесплатно Искусственный интеллект. Этапы. Угрозы. Стратегии - Бостром Ник (книги читать бесплатно без регистрации TXT) 📗. Жанр: Публицистика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Образно говоря, вероятность похожа на песок, рассыпанный на большом листе бумаги. Лист разделен на области различного размера, каждая из которых соответствует одному из возможных миров, причем области большей площади эквивалентны более простым мирам. Представьте также слой песка или любого порошка, покрывающего бумагу, — это и есть наше априорное распределение вероятности. Когда проводится наблюдение, в результате которого исключаются какие-то из возможных миров, мы убираем песок из соответствующих областей и распределяем его равномерно по областям, «остающимся в игре». Таким образом, общее количество песка на листе остается неизменным, просто по мере накопления наблюдений он концентрируется во все меньшем количестве областей. Здесь представлено описание обучения в его самом чистом виде. (Чтобы рассчитать вероятность гипотезы, мы просто измеряем количество песка во всех областях, соответствующих возможным мирам, в которых эта гипотеза истинна.)

Итак, мы определили правило обучения. Чтобы получить агента, нам потребуется также правило принятия решений. Для этого мы наделяем агента «функцией полезности», которая присваивает каждому возможному миру определенное число. Это число представляет собой желательность соответствующего мира с точки зрения базовых предпочтений агента32. (Чтобы выявить действие с максимальной ожидаемой полезностью, агент мог бы составить список всех возможных действий. А затем рассчитать условное распределение вероятности с учетом каждого действия — то есть распределение вероятности, которое стало бы следствием обусловливания текущего распределения вероятности­ после наблюдения за результатами этого действия. И наконец, рассчитать ожидаемую ценность действия можно как сумму ценностей всех возможных миров, умноженных на условную вероятность этих миров с учетом осуществления действия33.)

Правило обучения и правило принятия решений задают «определение оптимальности» агента. (В сущности такое же определение оптимальности широко используется в искусственном интеллекте, эпистемологии, философии науки, экономике и статистике34.) В реальном мире такого агента получить невозможно, поскольку для проведения необходимых расчетов не хватит никаких вычислительных мощностей. Любая попытка сделать это приводит к комбинаторному взрыву вроде описанного нами при обсуждении­ КИИ. Чтобы представить это, рассмотрим крошечное подмножество всех возможных миров, состоящее из единственного компьютерного монитора, висящего в бесконечном пустом пространстве. Разрешение монитора — 1000 ? 1000 пикселей, каждый из которых постоянно или светится, или нет. Даже такое подмножество всех возможных миров невероятно велико: количество возможных состояний монитора, равное 2(1000 ? 1000), превосходит объем всех вычислений, которые когда-либо будут выполнены в обозримой Вселенной. То есть мы не можем даже просто пронумеровать возможные миры в этом небольшом подмножестве всех возможных миров, не говоря уже о том, чтобы провести какие-то более сложные расчеты по каждому из них.

Но определение оптимальности может иметь теоретический интерес, даже несмотря на невозможность его физической реализации. Он представляет собой стандарт, с которым можно соотносить эвристические аппроксимации и который иногда позволяет нам судить, как именно поступил бы оптимальный агент в той или иной ситуации. С некоторыми альтернативными определениями оптимальности мы еще встретимся в двенадцатой главе.

Одно из преимуществ связи задачи обучения в определенных областях с общей задачей байесовского вывода состоит в том, что эти новые алгоритмы, делающие байесовский вывод более эффективным, немедленно приводят к прогрессу во множестве различных областей. Например, метод Монте-Карло непосредственно применяется в машинном зрении, робототехнике и вычислительной генетике. Еще одно преимущество заключается в том, что исследователям, работающим в различных областях, стало проще объединять результаты своих изысканий. Графовые модели и байесовские статистики представляют собой общий фокус исследований в таких областях, как машинное обучение, статистическая физика, биоинформатика, комбинаторная оптимизация и теория коммуникации35. Заметный прогресс в машинном обучении стал следствием использования формальных результатов­, изначально полученных в других областях науки. (Конечно, машинное обучение значительно выиграло от появления более быстрых компьютеров и доступности больших наборов данных.)

Последние достижения

Во многих областях деятельности уровень искусственного интеллекта уже превосходит уровень человеческого. Появились системы, способные не только вести логические игры, но и одерживать победы над людьми. Приведенная в табл. 1 информация об отдельных игровых программах демонстрирует, как разнообразные виды ИИ побеждают чемпионов многих турниров36.

Таблица 1. Игровые программы с искусственным интеллектом

Шашки. Уровень интеллекта выше человеческого.

Компьютерная игра в шашки, написанная в 1952 году Артуром Самуэлем и усовершенствованная им в 1955 году (версия включала модуль машинного обучения), стала первой интеллектуальной программой, которая в будущем научится играть лучше своего создателя37. Программа «Чинук» (CHINOOK), созданная в 1989 году группой Джонатана Шеффера, сумела в 1994 году обыграть действующего чемпиона мира — первый случай, когда машина стала победителем в официальном чемпионате мира. Те же разработчики, использовав алгоритм поиска «альфа-бета отсечение» в базе данных для 39 трлн эндшпилей, представили в 2002 году оптимальную версию игры в шашки — это программа, всегда выбирающая лучший из ходов. Правильные ходы обеих сторон приводят к ничьей38

Нарды. Уровень интеллекта выше человеческого.

Компьютерная игра в нарды, созданная в 1970 году Хансом Берлинером и названная им BKG, в 1979 году стала первой интеллектуальной программой, обыгравшей чемпиона мира в показательном матче — хотя впоследствии сам Берлинер приписывал эту победу удачно брошенным костям39.

Созданная в 1991 году Джералдом Тезауро программа TD-Gammon уже в 1992 году достигла такого уровня мастерства, что могла сразиться на чемпионате мира. Ради самосовершенствования программа постоянно играла сама с собой, причем Тезауро использовал такую форму укрепляющего обучения, как метод временных различий40.

С тех пор программы для игры в нарды по своему уровню в значительной степени превосходили лучших игроков мира41

«Эвриско» в космической битве Traveller TCS. Уровень интеллекта выше человеческого в сотрудничестве с самим человеком42.

Дугласом Ленатом в 1976 году была создана программа «Эвриско» (Eurisco), представлявшая собой набор эвристических, то есть логических, правил («если — то»). В течение двух лет (1981, 1982) эта экспертная система выигрывала чемпионат США по фантастической игре Traveller TCS (межгалактическое сражение); организаторы даже меняли правила игры, но ничто не могло остановить победного шествия «Эвриско», в результате они приняли решение больше не допускать «Эвриско» к участию в чемпионате43. Для построения своего космического флота и сражения с кораблями противника «Эвриско» использовала эвристические правила, которые — в процессе самообучения — корректировала и улучшала при помощи других эвристических правил

Реверси («Отелло­»). Уровень интеллекта выше человеческого.

Программа для игры в реверси Logistello выиграла в 1997 году подряд шесть партий у чемпиона мира Такэси Мураками44

Шахматы. Уровень интеллекта выше человеческого.

Шахматный суперкомпьютер Deep Blue в 1997 году выиграл у чемпиона мира Гарри Каспарова, Каспаров, хотя и имел претензии к создателям машины, все-таки заметил в ее игре проблески истинного разума и творческого подхода45. С тех пор игровые шахматные программы продолжают совершенствоваться46

Перейти на страницу:

Бостром Ник читать все книги автора по порядку

Бостром Ник - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Искусственный интеллект. Этапы. Угрозы. Стратегии отзывы

Отзывы читателей о книге Искусственный интеллект. Этапы. Угрозы. Стратегии, автор: Бостром Ник. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*