Искусство схемотехники. Том 2 (Изд.4-е) - Хоровиц Пауль (читать книги бесплатно полностью без регистрации .txt) 📗
Если измеряемый ток превышает максимальный ток выбранного диапазона, то ток Т2 не способен уравновесить ток Т1, даже если транзистор будет постоянно включен; при этом зафиксированное на счетчиках значение заряда будет содержать ошибку. ИМС4а проверяет условие выхода за пределы диапазона и зажигает светодиод, если выходной сигнал интегратора превышает фиксированный уровень опорного напряжения (который выбирается с запасом по отношению к нормальным условиям работы интегратора).
Некоторые подсчеты при проектировании. При проектировании схемы типа этой следует принять несколько решений. Например, большинство элементов КМОП-логики работают от напряжения +15 В для того, чтобы упростить коммутацию транзистора Т2. Поскольку 4-разрядные счетчики работают от напряжения +5 В, для сопряжения высокоуровневых сигналов КМОП-логики с уровнями счетчика использована схема 4049. ИМС4 работает от одного источника питания и ее выходной сигнал изменяется от нуля до +15 В, что упрощает подключение к ИМС5а.
Для того чтобы обеспечить достаточный диапазон работы транзистора Т1, опорное напряжение для интегратора и компаратора устанавливается с помощью стабилитрона D2 на уровне +4,7 В; здесь подойдет самый простой стабилитрон, поскольку точность не требуется. Обратите внимание на то, что прецизионное опорное напряжение зависит от напряжения +4,7 В, использованного для масштабирования тока, коммутируемого в интеграторе. Рабочий ток источника REF-02 используется заодно и для смещения стабилитрона.
Ключ (Т2) может оказать существенное влияние на общую точность прибора. Если он обладает слишком большой емкостью, то дополнительный заряд на его стоке приведет к погрешности. Схемное решение, использованное в предыдущем примере (коммутация на землю во время циклов отклонения тока), в данном случае не подойдет, поскольку ошибки напряжения сдвига ИМСЗ приведут к постоянной ошибке при очень малых токах. Используя однополюсный однонаправленный переключатель, показанный на схеме, можно увеличить динамический диапазон за счет некоторого снижения точности (что вызвано избыточным зарядом на стоке транзистора Т2, который интегрируется на каждом такте). Выбранный операционный усилитель интегратора представляет собой усилитель на полевых МОП-транзисторах с малыми токами смещения и поэтому пренебрежимо малой погрешностью по току (10 пА тип.). Поскольку операционные усилители на полевых транзисторах имеют, как правило, большие напряжения сдвига, чем усилители на биполярных транзисторах, такой выбор усилителя только обострит только что рассмотренную проблему динамического диапазона при использовании однополюсного ключа на два направления.
Динамический диапазон. Важно понимать, что этот прибор спроектирован в расчете на большой динамический диапазон с точным интегрированием тока, изменяющегося в процессе эксперимента на несколько порядков по величине. Именно по этой причине большое внимание уделяется схеме «переднего края» на прецизионном операционном усилителе с цепью подстройки сдвига, обеспечивающей прецизионную регулировку (обычная схема подстройки имеет, как правило, полный диапазон в несколько милливольт, что затрудняет точную подстройку сдвига на нуле). При подстройке ИМС2 на сдвиг 10 мВ или менее динамический диапазон прибора будет превышать 10000:1.
Схемы фазовой автоподстройки частоты
9.27. Введение
Система фазовой автоподстройки частоты (ФАПЧ) — это весьма важный и полезный узел, выпускаемый в виде отдельной интегральной схемы многими изготовителями. ФАПЧ содержит фазовый детектор, усилитель и генератор, управляемый напряжением (ГУН), и представляет собой сочетание в одном корпусе аналоговой и цифровой техники. Мы рассмотрим в дальнейшем применение ФАПЧ для тонального декодирования, демодуляции AM- и ЧМ-сигналов, умножения частот, частотного синтеза, импульсной синхронизации сигналов от шумящих источников (например, магнитной ленты) и восстановления «чистых» сигналов.
Существует традиционное предубеждение против ФАПЧ, связанное отчасти со сложностью реализации ФАПЧ на дискретных компонентах, а отчасти с сомнениями относительно ее надежной работы. С появлением недорогих и простых в применении устройств ФАПЧ первое препятствие для их широкого применения было преодолено. При правильном проектировании и корректном применении устройства ФАПЧ становятся такими же надежными элементами схемы, как операционные усилители или триггеры. На рис. 9.67 показана классическая схема ФАПЧ.
Рис. 9.67. Схема фазовой автоподстройки частоты.
Фазовый детектор — устройство, которое осуществляет сравнение двух входных частот, и формирует выходной сигнал, пропорциональный их фазовой разности (если, например, частоты различаются, то на выходе появится периодический сигнал на разностной частоте). Если fвхне равна fГУН, то отфильтрованный и усиленный сигнал фазовой ошибки будет воздействовать на частоту ГУН, изменяя ее в направлении fвх. При нормальных условиях ГУН быстро производит «захват» частоты fвх, поддерживая постоянный фазовый сдвиг по отношению к входному сигналу.
Поскольку отфильтрованный выходной сигнал фазового детектора является сигналом постоянного тока, а управляющий входной сигнал ГУН — мерой входной частоты, совершенно очевидно, что ФАПЧ можно применять для ЧМ-детектирования и тонального декодирования (используемое при цифровой передаче по телефонным линиям). Выходной сигнал ГУН — это сигнал местной частоты, равной fвх, таким образом, ГУН выдает чистый опорный сигнал, который может содержать шумы. Поскольку выходной сигнал ГУН может иметь любую форму (треугольную, синусоидальную и т. п.), это позволяет формировать, допустим, синусоидальный сигнал, синхронизированный с последовательностью входных импульсов.
В одном из часто встречающихся применений ФАПЧ между выходом ГУН и фазовым детектором включают счетчик по модулю n, обеспечивая, таким образом, умножение входной эталонной частоты fвх. Это — идеальный метод генерации импульсов синхронизации на частотах, кратных частоте сетевого напряжения, для интегрирующих АЦП (двухстадийных и с уравновешиванием заряда) с полным подавлением помех на сетевой частоте и ее гармониках. Подобные схемы являются основными при построении частотных синтезаторов.
Компоненты ФАПЧ. Фазовый детектор. Существуют два основных типа фазовых детекторов, которые иногда называют тип 1 и тип 2. Фазовый детектор типа 1 предназначен для работы с аналоговыми сигналами или цифровыми сигналами прямоугольной формы, а детектор типа 2 — для работы по логическим переходам (фронтам). Типичным представителем детекторов типа 1 является детектор 565 (линейный), а детектор КМОП 4096 можно отнести и к тому, и к другому типу. Самым простым фазовым детектором является детектор типа 1 (цифровой), который представляет собой простой вентиль ИСКЛЮЧАЮЩЕЕ ИЛИ (рис. 9.68).
Рис. 9.68. Фазовый детектор (тип 1), выполненный по схеме Исключающее ИЛИ.
На рисунке показана зависимость выходного напряжения от разности фаз при использовании фильтра низких частот и прямоугольного входного колебания со скважностью 50 %. Фазовый детектор типа 1 (линейный) имеет аналогичную зависимость выходного напряжения от фазовой разности, хотя его схема представляет собой «четырехквадрантный умножитель», известный также под названием «балансный смеситель». Фазовые детекторы этого типа, обладающие высокой линейностью, находят широкое применение в синхронном детектировании, которое мы рассмотрим в разд. 15.15.