Электроника?.. Нет ничего проще! - Эймишен Жан-Поль (библиотека книг бесплатно без регистрации txt) 📗
Н. — А какой катод К' «облагодетельствует» ионизация? Ведь ей представляется десять на выбор.
Л. — Нет, имеется только одна возможность: изогнутый кончик второго катода 5' уже находится в зоне ионизации основного катода 5, поэтому именно этот вторичный катод ионизация и предпочтет всем другим. Тогда ионизированная зона перейдет на вторичный катод 5', но долго она там не задержится. По окончании отрицательного импульса, приложенного к катодам К', они вновь обретут свой традиционный потенциал +20 в. Ионизация вновь будет стремиться перейти на один из основных катодов К. В наиболее благоприятных условиях для этого оказывается основной катод с номером 6, так как его изогнутый кончик находится в ионизированной зоне, окружающей вторичный катод 5'.
Как ты видишь, при каждом импульсе, посланном на вспомогательные катоды К', ионизированная зона перескакивает с одного основного катода на следующий. А так как эта зона благодаря излучаемому свету хорошо видна, достаточно взглянуть на лампу с переднего торца по направлению оси кольцевого анода, чтобы узнать количество полученных ею импульсов. Снаружи вокруг лампы установлено кольцо, на котором по окружности, примерно как на циферблате часов, нанесены цифры от 0 до 9.
Н. — Твоя система исключительно разумно сделана: лампа не только считает импульсы, но и наглядно обозначает результат счета. Но я плохо представляю, как заставить лампу после каждого десятка импульсов давать импульс для управления следующей лампой.
Л. — Для этого достаточно с одного из основных катодов К сделать отдельный выход. Этот выход соединяется с корпусом через небольшой резистор R (рис. 120), на выводах которого появляется небольшое положительное напряжение, когда разряд поступает на выведенный катод. Это положительное напряжение подается на базу транзистора, что порождает на его коллекторе отрицательный импульс, передаваемый следующему декатрону.
Н. — Но эта система мне нравится больше твоих декад. Она значительно проще, и в ней используется только одна лампа.
Л. — Но не забудь, что для управления вторичными катодами К' все же требуется один транзистор-усилитель. Часто для получения хорошо откалиброванного импульса используют даже два транзистора, включенных по схеме с одним устойчивым состоянием. Впрочем, необходимо отмстить, что декатрон, выгодно отличающийся от рассмотренных ранее счетчиков определенной простотой, существенно уступает им по быстродействию. Наиболее распространенные модели декатронов работают на частотах до сотни килогерц, что уже очень хорошо. Некоторые специальные модели декатронов, заполненные водородом, способны работать на частотах до 1 Мгц. Но водород дает очень слабое свечение и часто приходится пользоваться специальной системой индикации. Эти лампы отличаются небольшими размерами: диаметр около 18 мм и длина 40 мм. Часто 10 основных катодов К снабжаются отдельными выводами для индикации показаний декатрона с помощью транзисторных усилителей и цифровой индикаторной лампы.
Н. — Ты меня серьезно опечалил — только что рассказал о таком простом устройстве и сразу же ввел бездну усложнений.
Л. — Мы должны признать, Незнайкин, что очень большое количество способов построения счетных декад доказывает, что безупречного решения пока еще не нашли. Попутно хочу сказать тебе о существовании других типов декатронов, которые были созданы раньше уже описанного мною. В одной из таких ламп катоды представляют собой маленькие прямые стерженьки; в лампе имеется не один, а два ряда вторичных катодов К' и К" (рис. 121).
Рис. 121. В декатроне с двумя рядами вспомогательных катодов направление движения ионизированной зоны по кругу задается сигналами, приложенными к этим катодам: на катоды К' подаются прямоугольные сигналы, пропущенные через дифференцирующую схему, а на катоды К" — прямоугольные сигналы, пропущенные через интегрирующую схему.
На первый ряд катода подаются импульсы с крутым фронтом и пологим срезом, а на второй ряд — импульсы с пологим передним фронтом и еще более пологим срезом. Таким образом, удается заставлять ионизированную зону перескакивать с одного основного катода на следующий, проходя при этом через расположенные между ними два вспомогательных катода. Эта система кажется более сложной, но она обладает одним ценным свойством: меняя, можно заставить лампу считать в обычном или в обратном порядке.
Н. — Мне кажется, что это скорее неудобство, чем ценное свойство. Меня с детства приучили считать, прибавляя по единице к уже имеющемуся числу: 1, 2, 3, 4 и т. д.
Л. — Да, это и называют счетом. Но в некоторых случаях полезно иметь устройство, способное «считать назад». С помощью такого способа можно, например, производить вычитание. Первую партию импульсов счетчик считает, как обычно, а вторую партию обратным счетом, и после этой операции счетчик покажет разность.
Декатрон с двумя рядами вторичных катодов годится для решения такой задачи, тогда как более простой по конструкции декатрон, изображенный на рис. 119, может чередовать свои показания только в одном направлении.
Н. — Ну, а теперь ты описал все способы счета?
Л. — О, далеко нет! Сейчас я, не вдаваясь в подробности, так как это увело бы нас слишком далеко, кратко расскажу еще о нескольких устройствах. Прежде всего следует сказать об электронно-лучевой трубке с ламинарным (слоистым) лучом.
Это электронно-лучевая трубка особой конструкции, в которой подвергающийся воздействию отклоняющих пластин электронный луч попадает на экран, позволяющий определить место попадания луча. Этот луч проходит через маску с отверстиями (рис. 122) таким образом, что ток луча изменяется в зависимости от положения луча по довольно сложному закону, позволяющему с помощью простого резистора, включенного последовательно с анодом, получить 10 устойчивых положений для луча. При подаче импульсов с крутым фронтом и пологим срезом луч перескакивает с одного положения на следующее.
Рис. 122. В электронно-лучевой трубке с ламинарным лучом электронный луч по пути к аноду проходит через маску с отверстиями. Анод соединен с отклоняющей пластиной, что придает характеристике анодного тока в зависимости от анодного напряжения форму ломаной линии, что при питании анода через соответствующий резистор позволяет получить для электронного луча десять устойчивых положений. Воздействуя на другую отклоняющую пластину сигналами с крутым фронтом и пологим срезом, можно заставить луч переходить с одного устойчивого положения на следующее.
Когда луч перескакивает в десятое устойчивое положение, часть его электронов попадает на небольшой вспомогательный электрод, который подает импульс на следующую счетную трубку и возвращает луч первой счетной трубки на нуль. Эта система без особых трудностей может работать на частотах до 30 кгц. С помощью специальных схем удается повысить рабочую частоту трубки до 1 Мгц. Эти трубки невелики по размерам. Наиболее распространенная трубка такого типа имеет диаметр 35 мм и высоту 65 мм. Такие трубки дают интересные и экономичные решения, но я должен признать, что используются они все меньше и меньше.