Радио и телевидение?.. Это очень просто! - Айсберг Евгений Давыдович (читать книги онлайн без сокращений .txt) 📗
Мы уже видели, что при вращении катушки в ней возникает переменный ток; в этом случае наше устройство выступает в роли генератора переменного тока. Если мы, наоборот, пропустим через катушку переменный ток, то она начнет вращаться. Так работает электрический двигатель.
А теперь предположим, что эта катушка подвешена на эластичной проволочке и укреплена на оси с двумя точками опоры: одна сзади, а другая спереди. В этих условиях катушка уже не может совершить, несколько оборотов, так как это привело бы к чрезмерному скручиванию проволочки-подвески. Следовательно, это уже не двигатель. Но предположим, что мы пропускаем через катушку постоянный ток. Намагниченная таким образом катушка стремится повернуться. В зависимости от эластичности проволочки-подвески и, что самое главное, в зависимости от силы тока угол поворота катушки будет больше или меньше.
Теперь ты, несомненно, догадываешься, что это превосходное средство для измерения силы тока. Для этой цели на оси катушки укрепляют стрелку, а позади стрелки устанавливают шкалу с соответствующими делениями. Таким образом, мы построили гальванометр (рис. 19). Если его шкала отградуирована в амперах, то это амперметр. Прибор для измерения малых токов называется миллиамперметром или микроамперметром.
Рис. 19. В гальванометре катушка, по которой протекает измеряемый ток, расположена в поле электромагнита; она может вращаться вокруг горизонтальной оси.
Измерительные приборы
Таким образом можно сделать и прибор для измерения напряжения. Для этой цели последовательно с катушкой включают резистор R. При подключении такого прибора к двум точкам цепи, между которыми надлежит измерить напряжение, через наш гальванометр протекает ток, величина которого по закону Ома равна частному от деления напряжения на сумму омических сопротивлении резистора R и катушки. Шкала в этом случае отградуирована непосредственно в вольтах, милливольтах или микровольтах; в зависимости от единицы измерения мы получим вольтметр, милливольтметр или микровольтметр.
Гальванометр позволяет также измерять величину переменного тока и переменного напряжения (рис. 20).
Рис. 20. Схемы вольтметров, измеряющих постоянное (а) и переменное (б) напряжения.
Для этой цели прибор должен оснащаться выпрямителем, преобразующим переменный ток в постоянный. В другой раз я объясню тебе принцип работы такого выпрямителя.
Я не могу позволить себе остановиться на этом. Ведь я объяснил тебе, как измеряют величину тока и напряжения. И у тебя, дорогой Незнайкин, должен возникнуть вопрос, каким образом измерить третью величину, входящую в формулу закона Ома: сопротивление. Нет ничего проще. Для этой цели гальванометр нужно дополнительно оснастить батареей с известным и очень стабильным напряжением и включить ее последовательно с подвижной катушкой гальванометра (рис. 21).
Рис. 21. Омметр, измеряющий сопротивление резистора R.
При подключении этого прибора к измеряемому сопротивлению по подвижной катушке протекает ток, величина которого обратно пропорциональна измеряемому сопротивлению. Поэтому шкалу такого омметра можно отградуировать непосредственно в омах.
Однако теперь, мой дорогой Незнайкин, я чувствую, что ты устал. Поэтому я заканчиваю свой рассказ. Тем не менее я хочу добавить, что существует множество комбинированных измерительных приборов, в которых гальванометр можно включать с резисторами разных номиналов не только последовательно, но и параллельно (чтобы отвести от подвижной катушки большую или меньшую часть тока), с выпрямителем, а также с батареей. Такими приборами можно измерить токи, напряжения и сопротивления.
Беседа четвертая
ЕМКОСТЬ И ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ
Двое наших друзей знакомятся с любопытным поведением конденсаторов, включенных в цепь постоянного или переменного тока. Они рассматривают устройство конденсаторов постоянной и переменной емкости, выводят формулу емкостного сопротивления конденсатора, включенного в цепь переменного тока, в зависимости от его емкости и частоты тока.
Заряд конденсатора
Любознайкин. — Прошлый раз мы говорили с тобой о магнетизме. А мой дядюшка Радиоль рассказал тебе о различных свойствах и применении магнетизма. Теперь мы вернемся к изучению электрических полей.
Незнайкин. — Я думаю, что благодаря аналогии, существующей между электричеством и магнетизмом, изучить эту тему будет легче. В этих двух областях физики действует один и тот же закон притяжения разноименных зарядов и отталкивания одноименных. А силы, действующие в обоих этих случаях, обратно пропорциональны квадрату расстояния.
Л. — Твоя изумительная память облегчит мой рассказ о емкости. Так называют способность конденсатора накапливать больший или меньший заряд положительного или отрицательного электричества. Ты, разумеется, понимаешь, что этот заряд в основном зависит от размеров этого конденсатора (рис. 22).
Рис. 22. Емкость проводника, позволяющая ему накапливать электрические заряды.
Н. — А какой единицей пользуются для измерения емкости?
Л. — Единица измерения емкости называется фарадой. Однако фарада — это очень большая емкость. Поэтому на практике обычно пользуются долями этой единицы, чаще всего миллионной долей, именуемой микрофарадой, миллионными долями микрофарады — пикофарадами. Фарада обозначается буквой Ф, а ее названные доли соответственно мкФ и пФ.
Н. — Какой емкостью в этих условиях обладает сферический проводник размером с яблоко?
Л. — Совершенно ничтожной. Вообрази себе сферический проводник размерами с земной шар — его емкость была бы всего лишь 700 мкФ (рис. 23).
Рис. 23. Собственная емкость сферического проводника размером с земной шар составляет 700 мкФ.
Рождение конденсатора
Н. — Я констатирую для себя, что емкость нечто столь ничтожное, что она не должна играть важной роли в электронике.
Л. — Мой друг, ты ошибаешься, так как существует вполне доступный способ увеличить емкость или, чтобы быть более точным, сконденсировать ее.
Н. — Я не вижу, как достичь этой цели без увеличения размеров проводника.
Л. — Очень просто, достаточно приблизить к нему, но без касания, другой проводник с зарядом противоположной полярности. Что происходит в этом случае? Противоположные заряды испытывают взаимное притяжение, в результате чего величина заряда возрастает.