Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно полные версии .txt) 📗

Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно полные версии .txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно полные версии .txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Введение для элементарных возбуждений термина «К.» вызвано не только внешним сходством в описании энергии возбуждённого состояния кристалла (или жидкого гелия) и идеального газа, но и глубокой аналогией между свойствами свободной (квантовомеханической) частицы и элементарным возбуждением совокупности взаимодействующих частиц, основанной на корпускулярно-волновом дуализме. Состояние свободной частицы в квантовой механике описывается монохроматической волной (см. Волны де Бройля), частота которой

Большая Советская Энциклопедия (КВ) - i-images-141900371.png
, а длина волны
Большая Советская Энциклопедия (КВ) - i-images-175007508.png
p (E и
Большая Советская Энциклопедия (КВ) - i-images-129983814.png
 — энергия и импульс свободной частицы,
Большая Советская Энциклопедия (КВ) - i-images-199790130.png
 — Планка постоянная). В кристалле возбуждение одной из частиц (например, поглощение одним из атомов фотона), приводящее из-за взаимодействия (связи) атомов к возбуждению соседних частиц, не остаётся локализованным, а передаётся соседям и распространяется в виде волны возбуждений. Этой волне ставится в соответствие К. с квазиимпульсом
Большая Советская Энциклопедия (КВ) - i-images-199676731.png
 и энергией E = hw(k) (k — волновой вектор, длина волны l = 2p/k).

  Зависимость частоты от волнового вектора к позволяет установить зависимость энергии К. от квазиимпульса. Эта зависимость El = E (p) называют законом дисперсии, является основной динамической характеристикой К., в частности определяет ее скорость

Большая Советская Энциклопедия (КВ) - i-images-159715055.png
. Знание закона дисперсии К. позволяет исследовать движение К. во внешних полях, К., в отличие от обычной частицы, не характеризуется определённой массой, Однако, подчёркивая сходство К. и частицы, иногда удобно вводить величину, имеющую размерность массы. Её называют эффективной массой mэф. (как правило, эффективная масса зависит от квазиимпульса и от вида закона дисперсии).

  Всё сказанное позволяет рассматривать возбуждённую конденсированную среду как газ К. Сходство между газом частиц и газом К. проявляется также в том, что для описания свойств газа К. могут быть использованы понятия и методы кинетической теории газов, в частности говорят о столкновениях К. (при которых имеют место специфические законы сохранения энергии и квазиимпульса), длине свободного пробега, времени свободного пробега и т.п. Для описания газа К. может быть использовано кинетическое уравнение Больцмана. Одно из важных отличительных свойств газа К. (по сравнению с газом обычных частиц) состоит в том, что К. могут появляться и исчезать, т. е. число их не сохраняется. Число К. зависит от температуры. При Т = 0 К квазичастицы отсутствуют. Для газа К. как квантовой системы можно определить энергетический спектр (совокупность энергетических уровней) и рассматривать его как энергетический спектр кристалла или жидкого гелия. Разнообразие типов К. велико, т.к. их характер зависит от атомной структуры среды и взаимодействия между частицами. В одной и той же среде может существовать несколько типов К.

  К., как и обычные частицы, могут иметь собственный механический момент — спин. В соответствии с его величиной (выражаемой целым или полуцелым числом h) К. можно разделить на бозоны и фермионы. Бозоны рождаются и исчезают поодиночке, фермионы рождаются и исчезают парами.

  Для К.-фермионов распределение по энергетическим уровням определяется функцией распределения Ферми, для К.-бозонов — функцией распределения Бозе. В энергетическом спектре кристалла (или жидкого гелия), который является совокупностью энергетических спектров всех возможных в них типов К., можно выделить фермиевскую и бозевскую «ветви». В некоторых случаях газ К. может вести себя и как газ, подчиняющийся Больцмана статистике (например, газ электронов проводимости и дырок в невырожденном полупроводнике, см. ниже).

  Теоретическое объяснение наблюдаемых макроскопических свойств кристаллов (или жидкого гелия), основанное на концепции К., требует знания закона дисперсии К., а также вероятности столкновений К. друг с другом и с дефектами в кристаллах. Получение численных значений этих характеристик возможно только путём применения вычислительной техники. Кроме того, существенное развитие получил полуэмпирический подход: количественные характеристики К. определяются из сравнения теории с экспериментом, а затем служат для расчёта характеристик кристаллов (или жидкого гелия).

  Для определения характеристик К. используются рассеяние нейтронов, рассеяние и поглощение света, ферромагнитный резонанс и антиферромагнитный резонанс, ферроакустический резонанс, изучаются свойства металлов и полупроводников в сильных магнитных полях, в частности циклотронный резонанс,гальваномагнитные явления и т.д.

  Концепция К. применима только при сравнительно низких температурах (вблизи основного состояния), когда свойства газа К. близки к свойствам идеального газа. С ростом числа К. возрастает вероятность их столкновений, уменьшается время свободного пробега К. и, согласно неопределённостей соотношению, увеличивается неопределённость энергии К. Само понятие К. теряет смысл. Поэтому ясно, что с помощью К. нельзя описать все движения атомных частиц в конденсированных средах. Например, К. непригодны для описания самодиффузии (случайного блуждания атомов по кристаллу).

  Однако и при низких температурах с помощью К. нельзя описать все возможные движения в конденсированной среде. Хотя, как правило, в элементарном возбуждении принимают участие все атомы тела, оно микроскопично: энергия и импульс каждой К. — атомного масштаба, каждая К. движется независимо от других. Атомы и электроны в конденсированной среде могут принимать участие в движении совершенно др. природы — макроскопическом по своей сути (гидродинамическом) и в то же время не теряющем своих квантовых свойств. Примеры таких движении: сверхтекучее движение в гелии-II (см. Сверхтекучесть) и электрический ток в сверхпроводниках (см. Сверхпроводимость). Их отличительная черта — строгая согласованность (когерентность) движения отдельных частиц.

  Представление о К. получило применение не только в теории твёрдого тела и жидкого гелия, но и в др. областях физики: в теории атомного ядра (см. Ядерные модели), в теории плазмы, в астрофизике и т.п.

  Фононы. В кристалле атомы совершают малые колебания, которые в виде волн распространяются по кристаллу (см. Колебания кристаллической решётки). При низких температурах Т главную роль играют длинноволновые акустические колебания — обычные звуковые волны: они обладают наименьшей энергией. К., соответствующие волнам колебаний атомов, называют фононами. Фононы — бозоны; их число при низких температурах растет пропорционально T3. Это обстоятельство, связанное с линейной зависимостью энергии фонона ЕФ от его квазиимпульса р при достаточно малых квазиимпульсах ЕФ = sp, где s — скорость звука), объясняет тот факт, что теплоёмкость кристаллов (неметаллических) при низких температурах пропорциональна T3.

  Фононы в сверхтекучем гелии. Основное состояние гелия напоминает предельно вырожденный Бозе-газ. Как во всякой жидкости, в гелии могут распространяться звуковые волны (волны колебаний плотности). Звуковые волны — единственный тип микроскопического движения возможного в гелии вблизи основного состояния. Так как в звуковой волне частота w пропорциональна волновому вектору k: w = sk (s— скорость звука), то соответствующие К. (фононы) имеют закон дисперсии E = sp. По мере увеличения импульса кривая E = E (p) отклоняется от линейного закона. Фононы гелия также подчиняются статистике Бозе. Представление об энергетическом спектре гелия как о фононном спектре не только описывает его термодинамические свойства (например, зависимость теплоёмкости гелия от температуры), но и объясняет явление сверхтекучести.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (КВ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (КВ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*