Большая Советская Энциклопедия (ИЗ) - Большая Советская Энциклопедия "БСЭ" (книги онлайн без регистрации .TXT) 📗
Методы изотопных исследований — новая развивающаяся область геологии. В последние годы обнаружены колебания в изотопном составе В, Mg, Cu, Si и некоторых др. элементов. Изучение геол. значения этих колебаний — задача будущего.
А. П. Виноградов.
Изотопные эффекты
Изото'пные эффе'кты, изотопические эффекты, различия в свойствах изотопов данного элемента или в свойствах соединений, отличающихся изотопным составом, обусловленные разницей их атомных масс. Неодинаковые свойства изотопов, определяемые не массой, а другими характеристиками атомного ядра (проявляющиеся в радиоактивном распаде и т. п.), обычно не относятся к И. э.
Разница в массах изотопов обусловливает различие масс молекул, их моментов инерции, прочности соответствующих химических связей. Это приводит как к неравномерному распределению изотопов между химическими соединениями при достижении равновесия изотопного обмена (термодинамические И. э.), так и к неодинаковым скоростям одной и той же химической реакции, протекающей с участием разных изотопных форм реагирующих соединений (кинетические И. э.). Относительное различие масс изотопов тем меньше, чем больше атомный номер элемента. У изотопов водорода оно составляет 100% для дейтерия D (2 H) и 200% для трития Т (3 H) по сравнению с протием Н (1 H). Поэтому для водорода и гелия И. э. выражены наиболее сильно. К ним относятся, в частности, изотоническое смещение спектральных линий и эффекты, наблюдаемые при переходе в сверхпроводящее состояние и в состояние сверхтекучести.
Разница в массах изотопов данного элемента обусловливает неодинаковость свойств у изотопных форм химического соединения, содержащего этот элемент (таких, как плотность, показатель преломления, вязкость, коэффициент диффузии и др.). Вследствие И. э. изменяются также термодинамические свойства, такие, как теплоёмкость, теплопроводность, теплота испарения, теплота плавления, давление насыщенного пара при данной температуре и др., а также частоты колебания атомов в молекулах и в кристаллических решётках.
Использование изотопов в качестве изотопных индикаторов (меченых атомов) основано на представлении об идентичности физических и химических свойств изотопов данного элемента. Как показывает опыт, для многих изотопов это упрощающее представление близко к действительности, и для них величины И. э. (как кинетических, так и термодинамических) не выходят за пределы ошибок химического эксперимента. Однако для лёгких элементов различия в химических свойствах изотопов могут быть существенны. Это необходимо учитывать, когда в качестве меченых атомов используются изотопы лёгких элементов, особенно изотопы водорода — дейтерий или тритий. И. э. лежат в основе почти всех известных лабораторных и промышленных методов изотопов разделения .
Я. М. Варшавский.
Изотопный двигатель
Изото'пный дви'гатель, то же, что радиоизотопный ракетный двигатель .
Изотопный обмен
Изото'пный обме'н, химический процесс, заключающийся в перераспределении изотопов какого-либо элемента между реагирующими веществами. При И. о. происходит замещение одного изотопа какого-либо элемента на другой его изотоп в молекулах данного вещества без изменения их элементарного состава. Например, если хлористый водород HCl, обогащенный тяжёлым изотопом хлора 37 Cl, смешать с хлором Cl2 обычного изотопного состава (75,53% 35 Cl и 24,47% 37 C1), то вследствие реакций И. о.
H37 Cl + 35 Cl2 = H35 Cl + 35 Cl37 Cl
H37 Cl + 35 Cl37 Cl = H35 Cl + 37 Cl2
хлор обогатится тяжёлым изотопом, а хлористый водород обеднится им.
Возможности протекания реакций И. о. весьма различны: они могут идти в гомогенных условиях (между растворённым веществом и растворителем, в смеси газов и т. д.), а также в гетерогенных (например, между твёрдым или жидким веществом и нерастворимым газом). Механизмы реакций И. о. не отличаются от механизмов других химических реакций.
Поскольку химические свойства изотопов одного и того же элемента почти одинаковы, а относительные различия в массах их атомов невелики (за исключением изотопов водорода), то при достижении химического равновесия И. о. каждый изотоп распределяется между реагирующими веществами почти равномерно. Для изотопов тяжёлых элементов неравномерность не превышает десятых долей процента, для изотопов лёгких элементов (от Li до Cl) не превышает 10%. Только для изотопов водорода неравномерность в распределении между некоторыми веществами достигает сотен процентов. Распределение изотопов между веществами в состоянии равновесия характеризуется коэффициентом распределения a, определяющим соотношение равновесных концентраций изотопов в реагирующих веществах. При равномерном распределении изотопов a = 1. Отклонение от равномерного распределения зависит не только от массы изотопов, но и от химического состава веществ, между которыми происходит И. о. Кроме того, a зависит от температуры и во всех случаях по мере её повышения приближается к 1. Скорость протекания И. о. всецело определяется механизмом реакций. В некоторых случаях И. о. протекает практически мгновенно (например, при ионных реакциях в растворе), в других случаях — крайне медленно или же не происходит вовсе. Для ускорения И. о. так же, как и для других химических реакций, часто используют различные катализаторы.
И. о. применяют для концентрирования требуемого изотопа. Для этого многократно повторяют процесс обогащения этим изотопом одного из веществ при условии неравномерного распределения изотопов между веществами. Для изотопов водорода и лития, нашедших применение в атомной и термоядерной энергетике, такие методы получили промышленное использование. К ним относится, например, получение тяжёлой воды путём И. о. воды и сероводорода или И. о. воды и водорода:
1 H2 HS + 1 H2 O = 1 H2 S + 1 H2 HO
или
1 H2 H + 1 H2 O = 1 H2 + 1 H2 HO.
В химических исследованиях И. о. применяют для выяснения элементарных стадий различных реакций. По скорости протекания И. о. можно иногда лучше, чем по другим реакциям, судить о подвижности атомов в молекулах и о реакционной способности химических соединений. И. о. используют также в препаративных работах для получения меченых соединений (см. Изотопные индикаторы ).
Лит.: Бродский А. И., Химия изотопов, 2 изд., М., 1957; Рогинский С. З., Теоретические основы изотопных методов изучения химических реакций, М., 1956.
С. Э. Вайсберг.
Изотопов разделение
Изото'пов разделе'ние, выделение чистых изотопов из смеси изотопов данного элемента или обогащение смеси отдельными изотопами. И. р. — важная проблема, имеющая большое научное и практическое значение. С момента открытия изотопов и до 1930-х гг. попытки И. р. производились главным образом для обнаружения изотопов у стабильных элементов, измерения их массы и изотопного состава. Удавалось выделить лишь небольшие (индикаторные) количества некоторых элементов, незначительно обогащенных изотопами. В 30-х гг. начались фундаментальные исследования атомных ядер, ядерных реакций , взаимодействия частиц с ядрами и т. д. Достоверность экспериментальных данных и интерпретация полученных результатов в значительной мере зависели от чистоты и доступного количества изотопа. Но получение чистых изотопов даже в миллиграммовых количествах являлось сложной задачей. Были выделены лишь небольшие количества обогащенных смесей изотопов главным образом лёгких элементов. Только дейтерий начали производить в промышленных масштабах. Дальнейшее развитие техники И. р. было вызвано установлением в 1939 реакции деления 235 U под действием нейтронов, которое открыло перспективу использования ядерной энергии в мирных и военных целях (см. Ядерная энергетика , Ядерный реактор , Ядерное оружие ). Получение в больших количествах изотопов U и некоторых других элементов, необходимых в качестве «ядерного горючего» или материалов для ядерной техники, превратилось с этого момента в важную задачу. Для её решения были построены огромные заводы.