Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать полностью бесплатно хорошие книги txt) 📗

Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать полностью бесплатно хорошие книги txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" (читать полностью бесплатно хорошие книги txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Приведём пример траектории Редже для рассеяния электрона в кулоновском поле ядра водородоподобного атома. Уровни энергии в этом случае определяются формулой Бора:

 

Большая Советская Энциклопедия (СИ) - i-images-139473550.png

  (n — главное квантовое число, Z — атомный номер; см. Атом), что даёт зависимость:

 

Большая Советская Энциклопедия (СИ) - i-images-130363315.png
,

  в которой целым положительным значениям l отвечают определённые уровни энергии системы En.

  Для значений Е > 0 (выше порога) l (E) равна

 

Большая Советская Энциклопедия (СИ) - i-images-145193598.png

  (где k — волновое число, связанное с энергией соотношением

Большая Советская Энциклопедия (СИ) - i-images-106702828.png
. Т. к. Rel (E) для Е > 0 не равна целому положительному числу, это означает, что система не имеет резонансных состояний.

  Траектории Редже явились основой систематики ядерно-стабильных частиц и резонансов. В отличие от систематики, основанной на симметрии частиц, эта систематика опирается на динамику взаимодействия. При помощи реджевской траектории a. (Е) можно систематизировать частицы с одинаковыми внутренними характеристиками и отличающимися на чётное число значениями спина. Группы частиц, объединённые в супермультиплеты, должны, следовательно, повторяться с различными значениями спинов (отличающимися на чётное число). Т. е. наряду с октетом барионов со спином 1/2 должны существовать октеты барионов со спином 5/2, 9/2 и т. д. Т. о., получается некоторый аналог периодической системы Менделеева и реджевские траектории, объединяющие частицы с одинаковыми внутренними характеристиками, аналогичны её столбцам.

  Как показывает опыт, реджевские траектории для частиц являются приближённо линейными функциями от квадрата их масс (рис. 5). Траектория, на которой лежат резонансы с квантовыми числами (кроме l) вакуума (I = J = 0, чётность Р = + 1), играет важную роль для феноменологического описания процессов рассеяния, определяя полное сечение при очень высоких энергиях (она называются вакуумной траекторией, или траекторией Померанчука). Процессы, в которых происходит передача заряда, странности и др. квантовых чисел (например, p- + р ® pq + n), при феноменологическом анализе описываются траекториями Редже с соответствующими квантовыми числами («реджеонами»).

  В релятивистской теории наряду с полюсами Редже появляются и точки ветвления. Однако структура особенностей в комплексной l-плоскости до конца ещё не выяснена.

  На основе предположений о характере особенностей парциальных амплитуд построены различные реджеонные модели для описания процессов рассеяния и множеств. рождения при высоких энергиях.

  Для изучения процессов С. в. успешно используются также мультипериферическая модель и описание реакций с помощью квазипотенциалов, учитывающих поглощение частиц.

  На основе дисперсионных соотношений и предположения о характере особенностей в l-плоскости построены правила сумм, которые интегрально связывают резонансы в одном канале реакции с резонансами перекрёстного канала (т. н. «глобальная дуальность»). Дальнейшим развитием этого подхода является гипотеза локальной дуальности, согласно которой амплитуда процесса в каждом канале реакции определяется при низких энергиях резонансами, существующими в этом канале, а при высоких энергиях — резонансами из перекрёстных каналов. Гипотеза дуальности является отправной точкой для построения различных дуальных моделей.

  Использование идей симметрии для динамического описания сильных взаимодействий

  Существует несколько весьма плодотворных направлений в теории С. в., основанных на использовании внутренних симметрий С. в. для динамического описания процессов. К этим направлениям относится, в частности, т. н. алгебра токов, в которой сделаны шаги по объединению методов теории групп для рассмотрения симметрий и теоретико-полевых представлений, использующихся в методе дисперсионных соотношений. Идея алгебры токов основана на существовании сохраняющихся токов адронов. Одним из таких токов является электромагнитный (векторный) ток, закон сохранения которого отвечает закону сохранения электрического заряда. Благодаря изотопической инвариантности С. в. можно предполагать далее, что сохраняется заряженный векторный ток, являющийся изотоническим «партнёром» электромагнитного тока и отвечающий, например, переходам нейтрона в протон (и обратным переходам); сохранение такого заряженного векторного тока хорошо проверено в слабых взаимодействиях адронов с лептонами. Учитывая SU (3)-симметрию С. в., можно предполагать также сохранение некоторых др. векторных токов, в частности отвечающих переходам нуклонов в гипероны. Помимо векторных токов, существуют т. н. аксиально-векторные токи адронов (например, заряженный аксиально-векторный ток, соответствующий переходу нейтрон-протон, наряду с заряженным векторным током определяет слабые взаимодействия нуклонов). Аксиально-векторный ток адронов, строго говоря, не является сохраняющимся. Однако в соответствии с экспериментальными данными можно предполагать, что его нарушение минимально и исчезает в условиях, когда можно пренебречь массой пиона (на этом предположении основана т. н. теория частично сохраняющегося аксиально-векторного тока, ряд следствий из которой хорошо согласуется с опытными данными). Исходя из SU (3)-симметрии С. в., можно установить связи (коммутационные соотношения) между операторами, соответствующими векторным и аксиально-векторным токам, которые и являются основой теории, названной алгеброй токов. Хотя строгого обоснования этих соотношений не существует (оно получается, например, с привлечением гипотезы кварков), использование их на основе теоретико-полевых методов приводит к ряду важных предсказаний, оправдывающихся на опыте. Особенно плодотворным оказывается применение алгебры токов к процессам взаимодействия (слабым и электромагнитным) лептонов с адронами.

  Важным направлением в теории С. в. является теория т. н. калибровочных (компенсирующих) полей. Согласно этой теории, сохраняющимся в С. в. величинам (таким, как барионный и электрический заряды, изотопический спин, гиперзаряд) отвечает взаимодействие, переносимое частицами со спином, равным единице (векторными мезонами). Поскольку известно, что электромагнитные взаимодействия переносятся фотонами (имеющими спин 1) и существуют веские основания предполагать, что слабые взаимодействия переносятся векторными частицами (т. н. промежуточными векторными бозонами), успешное развитие калибровочных теорий С. в. позволяет предполагать наличие глубокой внутренней связи между всеми тремя типами взаимодействий и надеяться на создание единой теории этих взаимодействий.

  Лит.: Боголюбов Н. Н., Медведев Б. В., Поливанов М. К., Вопросы теории дисперсионных соотношений, М., 1958; Логунов А. А., Нгуен Ван Хьеу, Основные тенденции в развитии теории сильных взаимодействий, «Физика элементарных частиц, и атомного ядра (ЭЧАЯ)», 1974, т. 5, в. 3; Логунов А. А., Месшвиришвили М. А., Хрусталев О. А., Ограничения на поведение сечений упругих и неупругих процессов, гам же, 1972, т. 3, в. 1; Теория сильных взаимодействий при больших энергиях. Сб. статей, пер. с англ., М., 1963; Швебер С., Бете Г., Гофман Ф., Мезоны и поля, пер. с нем., т. 2, М., 1957; Коллинз П., Сквайре Ю. Дж., Полюса Редже в физике частиц, пер. с англ., М., 1971; Фейнман P., Взаимодействие фотонов с адронами, пер. с англ., М., 1975; Иден Р., Соударения элементарных частиц при высоких энергиях, пер. с англ., М., 1970.

  А. А. Логунов, С. С. Герштейн.

Большая Советская Энциклопедия (СИ) - i008-pictures-001-299314837.jpg
Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (СИ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (СИ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*