Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (АЭ) - Большая Советская Энциклопедия "БСЭ" (читать бесплатно книги без сокращений TXT) 📗

Большая Советская Энциклопедия (АЭ) - Большая Советская Энциклопедия "БСЭ" (читать бесплатно книги без сокращений TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (АЭ) - Большая Советская Энциклопедия "БСЭ" (читать бесплатно книги без сокращений TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  При свободно молекулярном обтекании у отражённых от тела молекул длина свободного пробега l больше характерного размера тела d, поэтому взаимодействие отражённых молекул с набегающими молекулами вблизи тела незначительно. Это даёт возможность рассматривать падающий и отражённый потоки молекул независимо, что существенно облегчает описание их движения. Движение любой молекулы можно считать как бы состоящим из двух: 1) молекулы участвуют в направленном движении газового потока и их скорость равна скорости потока в целом; 2) одновременно молекулы участвуют в хаотическом тепловом движении и при этом движутся с различными скоростями, значения которых описываются Максвелла распределением. Применение кинетической теории газов даёт принципиальную возможность рассчитать как давление газа на стенку, так и количество тепла, которое она получает или отдаёт при взаимодействии с молекулами газа. Для этого необходимо знать законы отражения молекул от твёрдой поверхности.

  Однако точное математическое описание движения разреженного газа с помощью уравнений кинетической теории представляет значительные трудности. Это заставляет развивать приближённые методы. Например, реальное отражение молекулы от тела заменяется т. н. зеркально-диффузной схемой, согласно которой часть молекул отражается от поверхности тела зеркально, другая — рассеивается диффузно, в соответствии с Ламберта законом(законом косинуса).

  Отношение количества диффузно рассеянных молекул к общему их числу определяет степень диффузности рассеяния, которая характеризуется числом f (при f = 0 происходит только зеркальное отражение, при f = 1 — только диффузное). Для снижения сопротивления летящего тела выгодно зеркальное отражение, а также малые углы падения молекул на поверхность, т. к. при этом увеличивается вероятность зеркального отражения.

  Другим существенным параметром является т. н. коэффициент термической аккомодации а, который характеризует изменение энергии молекулы после её отражения. Значения а могут меняться от 0 до 1. Если после отражения энергия молекулы не изменилась и осталась равной энергии падающей молекулы, то а = 0. Если же средняя энергия отражённой молекулы соответствует температуре стенки, то это значит, что она отдала стенке всю возможную энергию и а = 1. Очевидно, что аэродинамический нагрев тем меньше, чем меньше а.

  Величины f и а — наиболее важные характеристики А. р. г. В общем случае а и f зависят от скорости движения потока газа, материала и температуры стенки, от гладкости её поверхности, наличия на поверхности адсорбированных молекул газа и т. д. Однако точных зависимостей a иf от определяющих их параметров ещё не получено.

  Эксперименты, проведённые в широком диапазоне скоростей для различных газов и материалов, дают значения a в широких пределах — от 0,95 до 0,02. Установлено, что уменьшение a происходит при увеличении скорости молекул газа и отношения молекулярных масс m1 и m2 тела и газа. Так например, если вместо тела из алюминия взять тело из свинца, то коэффициент аккомодации уменьшается примерно в 4 раза, что приводит к уменьшению аэродинамического нагрева. Коэффициент f изменяется меньше: от 0,98 до 0,7.

  Разреженность среды проявляется в совершенно необычном поведении аэродинамических коэффициентов. Так, коэффициент сопротивления сферы Cx зависит от отношения абсолютной температуры тела Tw к абсолютной температуре потока Ti а также от a и f (рис. 2), в то время как в сплошной среде таких зависимостей не наблюдается. Коэффициенты, характеризующие теплообмен, также отличаются качественно и количественно от континуальных.

  Промежуточная область. При l/d ~ 1 существенна роль межмолекулярных столкновений, когда отражённые от поверхности тела молекулы значительно искажают распределение скоростей молекул набегающего потока. Теоретические решения для свободномолекулярного потока здесь неприемлемы. Вместе с тем, такое течение ещё нельзя рассматривать как течение сплошной среды. Промежуточная область весьма трудна для математического анализа.

  Течение со скольжением. Если размер тела d в десятки раз больше l, т. е. l/d < 1, то в потоке уже могут возникать характерные для газовой динамики ударные волны и пограничные слоина поверхности тел. Однако, в отличие от обычного пограничного слоя, температура примыкающего к стенке газа Ta не равна температуре стенки Tw, а скорость потока на поверхности тела не равна нулю (поток проскальзывает). Скачок температуры (TwTa) пропорционален l и зависит от f. Скорость скольжения также пропорциональна l и зависит от f. Эксперименты показывают, что при увеличении разреженности газа происходит утолщение ударной волны, возрастает и толщина пограничного слоя, но значительно медленнее (рис. 3). Ударная волна может распространиться на всю область сжатого газа в районе передней критической точки обтекаемого тела и слиться с пограничным слоем. Распределение плотности в районе передней критической точки становится плавным, а не скачкообразным, как в континууме. При расчёте течений со скольжением поток описывается обычными уравнениями газовой динамики, но с граничными условиями, учитывающими скачок температуры и скорость скольжения.

  Границы упомянутых областей течения весьма условны. Для различных тел появление признаков, характеризующих ту или иную область, может наступить при разных значениях параметра разреженности l/d. В связи со сложностью теоретических расчётов и необходимостью определения ряда эмпирических констант, входящих в практические методы расчёта тепловых и аэродинамических характеристик, особое значение в А. р. г. приобретает эксперимент.

  Лит.: Аэродинамика разреженных газов, сб. 1, под ред. С. В. Валландера, Л., 1963; Паттерсон Г. Н., Молекулярное течение газов, пер. с англ., М., 1960; Тзян Х. Ш., Аэродинамика разреженных газов, в сборнике: Газовая динамика, сб. статей, пер. с англ., под ред. С. Г. Попова и С. В. фальковича, М., 1950.

  Л. В. Козлов.

Большая Советская Энциклопедия (АЭ) - i008-pictures-001-292799174.jpg

Рис. 2. Зависимость коэффициента сопротивления сферы Cx в свободномолекулярном потоке при различных отношениях абсолютной температуры тела Tw к абсолютной температуре потока Ti: а — от числа М полёта для a = 1,0 и б — от коэффициента аккомодации a.

Большая Советская Энциклопедия (АЭ) - i009-001-208726916.jpg

Рис. 1. Условная схема различных течений около плоской длинной бесконечно тонкой пластины, обтекаемой сверхзвуковым потоком: А — свободномолекулярное течение с однократными соударениями; В — промежуточная область с многократными соударениями; С — течение со скольжением; D — континуум; 1 — ударная волна; 2 — граница пограничного слоя (стрелки показывают значения скорости на данном расстоянии от стенки; 3 — макроскопическое движение молекул. (Масштабы зон и областей не соблюдены.)

Большая Советская Энциклопедия (АЭ) - i009-001-215160119.jpg

Рис. 3. Фотографии ударной волны перед сферой диаметра d == 15 мм: слева — в разреженном газе; справа — в сплошной среде.

Аэродинамическая сила

Аэродинами'ческая си'ла, см. Аэродинамические сила и момент.

Аэродинамическая труба

Аэродинами'ческая тру'ба, установка, создающая поток воздуха или газа для эксперимент, изучения явлений, сопровождающих обтекание тел. С помощью А. т. определяются силы, возникающие при полёте самолётов и вертолётов, ракет и космических кораблей, при движении подводных судов в погруженном состоянии; исследуются их устойчивость и управляемость; отыскиваются оптимальные формы самолётов, ракет, космических и подводных кораблей, а также автомобилей и поездов; определяются ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения — мосты, мачты электропередач, дымовые трубы и т. п. В специальных А. т. исследуется нагревание и теплозащита ракет, космических кораблей и сверхзвуковых самолётов.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (АЭ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (АЭ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*