Большая Советская Энциклопедия (ТВ) - Большая Советская Энциклопедия "БСЭ" (бесплатные полные книги .TXT) 📗
8) В большинстве случаев при определённой температуре все степени свободы атомных частиц в Т. т. можно разделить на 2 категории. Для одних kT велико по сравнению с характерной энергией их взаимодействия Uвз, для др. степеней свободы kT мало по сравнению с Uвз. Степени свободы, для которых kT ³ Uвз, могут быть описаны в терминах «газа частиц» (например, «газ магнитных стрелок» при Т ³ Тс); степени свободы, для которых kT £ Uвз, находятся на низком уровне возбуждения, благодаря чему соответствующие им движения могут быть описаны путём введения квазичастиц, слабо взаимодействующих друг с другом. Т. о., в большинстве случаев свойства Т. т. могут быть «сведены» к свойствам газов — либо частиц, либо квазичастиц. Сильное взаимодействие при этом не «выпадает», оно определяет структуру Т. т. (например, его кристаллической решётки) и свойства отдельной квазичастицы. Квазичастицы существуют не в свободном пространстве (как частицы в реальных газах), а в кристаллической решётке, структура которой отражается в свойствах квазичастиц. Вблизи точек фазового перехода 2-го рода такое «сведёние» невозможно, так как движение атомных частиц Т. т. в этих условиях скоррелировано (на «языке» квазичастиц это (означает, что нельзя пренебречь их взаимодействием). Корреляция носит особый (не силовой) характер: вероятность коллективных движений частиц и квазичастиц столь же велика, сколь и их индивидуальных движений. Возрастание роли корреляции в движении частиц приводит к наблюдаемым эффектам: возрастают теплоёмкость, магнитная восприимчивость и т. п. Вблизи фазового перехода 2-го рода Т. т. ведёт себя как система т сильно взаимодействующих частиц (или квазичастиц), принципиально не сводимая к газу. Вблизи фазового перехода 2-го рода Т. т. может служить моделью значительно более сложных систем (например, ядерной материи, элементарных частиц в процессе их взаимодействия).
Знание атомно-молекулярной структуры Т. т., характера движения составляющих его частиц объясняет наблюдаемые явления и позволяет предсказывать ещё не открытые свойства Т. т., а также целенаправленно изменять структуру Т. т. и синтезировать Т. т. с уникальным, набором свойств.
Физика Т. т. разделилась на ряд областей, обособление которых происходит путём выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и др.), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия Т. т. и т. п.), либо определённых свойств Т. т. (механических, тепловых и т. д.). Возможность обособления — следствие относительной независимости атомных движений в Т. т.
Атомно-кристаллическая структура Т. т. зависит от сил, действующих между атомными частицами. Изменяя среднее расстояние между атомами с помощью внешнего давления, можно существенно изменить вклад межатомных сил различной природы и благодаря этому — кристаллическую структуру Т. т. Обнаружено большое число различных существующих при больших давлениях кристаллических модификаций, многие из которых отличаются по физическим свойствам. Например, Bi под давлением образует 3 сверхпроводящие модификации: при 25 300 атм < р < 27 000 атм Bi llI (Tc = 3,93 К); при 27 000 атм < р < 80 000 атм Bi III (Tc = 6,9 К); при 80 000 атм < р Bi IV (Tc = 7 К). Многие полупроводники под давлением переходят в металлическое состояние (Ge при р » 120 000 атм становится металлом), a Yb (металл) под давлением превращается в полупроводник. Есть основания считать, что молекулярный водород под давлением в 2—3 106 атм превращается в металл. При чрезвычайно большом давлении (или плотности), когда объём, приходящийся на один атом, становится меньше обычного атомного размера, атомы теряют свою индивидуальность и вещество превращается в сильно сжатую электронноядерную плазму. Исследование такого состояния вещества важно, в частности, для понимания структуры звёзд.
Атомная структура кристаллов экспериментально определяется методами рентгено-структурного анализа, магнитная структура ферромагнетиков и антиферромагнетиков (ориентация магнитных моментов атомов) — методами нейтронографии. Полное знание атомной структуры предполагает знание размеров элементарной ячейки кристалла и положения всех атомов внутри неё. Однако во многих случаях достаточно знать лишь элементы симметрии данного кристалла. При макроскопическом описании Т. т. (механических, электрических, тепловых, оптических свойств) кристаллы можно рассматривать как сплошную анизотропную среду, в которой симметричное расположение атомов приводит к эквивалентности направлений. Основу симметрии бесконечной кристаллической решётки составляет её пространственная периодичность — способность совмещаться с собой при параллельных переносах (трансляциях) на определённые расстояния в определённых направлениях. Эквивалентные узлы кристаллической решётки, которые могут быть совмещены друг с другом путём трансляции, образуют Браве решётку. Их существует 14 типов. По симметрии Браве решётки делятся на 7 кристаллических сингоний. Кроме того, кристаллическая решётка может обладать осями и плоскостями симметрии, зеркально-поворотными и винтовыми осями и плоскостями зеркального скольжения. Совокупность осей и плоскостей симметрии, определяющая симметрию физических свойств кристаллов, называется кристаллическим классом; их 32. Совокупность всех элементов симметрии кристаллической решётки называется её пространственной группой. Всего возможно 230 различных пространственных групп. Если учесть магнитные свойства атомов, составляющих кристаллическую решётку, то число возможных магнитных пространственных групп увеличится до 1651 (см. Симметрия кристаллов).
Структура реального кристалла. Хотя монокристаллыбольшого размера в природе встречаются редко, они всё чаще используются в технике. Выращивают их искусственно (см. Синтетические кристаллы). Применяемые на практике конструкционные материалы, как правило, — поликристаллы, состоящие из огромного числа мелких монокристаллов (кристаллических зёрен). Многие свойства Т. т. (например, пластичность, прочность) зависят от величины зёрен. При хаотической ориентации кристаллических зёрен поликристалл можно считать изотропным телом, хотя каждый кристалл в отдельности анизотропен. В некоторых поликристаллах возникает анизотропия, связанная с условиями их кристаллизации и обработки (ориентированный рост, прокатка, ковка); она называется текстурой.
Границы зёрен нарушают строгую периодичность в расположении атомов в кристалле. Однако это — не единственные дефекты в кристаллах. Дефектами являются микроскопические включения (в частности, зародыши др. кристаллической модификации, пустоты и т. п.), сама поверхность образца, чужеродные примесные атомы, вакансии, атомы в междоузлиях, дислокации и т. д. Наличие или отсутствие тех или др. дефектов во многих случаях определяет так называемые структурночувствительные свойства Т. т.: механические (прочность, пластичность), электропроводность, оптические и др. (см. ниже).
Межатомные связи. По типам связей Т. т. делят на 5 классов, каждый из которых характеризуется своеобразным пространств. распределением электронов (табл. 1). 1) В ионных кристаллах (NaCI, KCl и др.) основные силы, действующие между ионами, — силы электростатического притяжения. Распределение электронного заряда вблизи каждого иона близко к сферическому и слегка нарушается в области соприкосновения соседних ионов. 2) В кристаллах с ковалентной связью валентные электроны обобществлены соседними атомами.
Табл. 1. — Классификация кристаллов по типам связей
Тип кристалла | Пример | Энергия связи*, ккал/моль | Характерные свойства |
Ионный …………. Атомный (с ковалентной связью) Металлический… Молекулярный…. С водородными связями..………… | NaCI С (алмаз), Ge, Si Cu, Al Ar, СН4 Н2О (лёд) H2F | 180—220 170—283 26—96 1,8 3—10 | Отражение и поглощение света в инфракрасной области; малая электропроводность при низких температурах; хорошая ионная проводимость при высоких температурах Высокая твёрдость (у чистых образцов), слабая проводимость при низких температурах Высокая электропроводность Низкие точки плавления и кипения, сильная сжимаемость Тенденция к полимеризации; энергия связи между молекулами больше, чем у аналогичных молекул без водородных связей |
* Для кристаллов первых двух типов энергия связи определена при 300 К; для молекулярных кристаллов и кристаллов с водородными связями — в точке плавления. Иногда мерой энергии связи служит энергия (на одну частицу), которую надо затратить, чтобы, нагревая Т. т. от 0 К, расщепить его на невзаимодействующие атомы или ионы. |