Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатная библиотека электронных книг .TXT) 📗
В первой четверти 20 в. Г. описывали как элементарную, неделимую единицу наследственности, управляющую развитием одного признака, передающуюся целиком при кроссинговере и способную к изменению. Дальнейшие исследования (советские учёные А. С. Серебровский, Н. П. Дубинин, И. И. Агол, 1929; Н. П. Дубинин, Н. Н. Соколов, Г. Д. Тиняков, 1934, идр.) выявили сложность строения и дробимость Г. В 1957 американский генетик С. Бензер на фаге Т4 доказал сложное строение Г. и его дробимость; он предложил для единицы функции, определяющей структуру одной полипептидной цепи, название цистрон, для единицы мутации — мутон и для единицы рекомбинации — рекон. В пределах одной функциональной единицы (цистрона) находится большое число мутонов и реконов.
К 50-м гг. 20 в. были накоплены доказательства того, что материальной основой Г. в хромосомах является ДНК. Английский учёный Ф. Крик и американский — Дж. Уотсон (1953) выяснили структуру ДНК и высказали гипотезу (позже полностью доказанную) о механизме действия Г. ДНК состоит из двух комплементарных т. е. взаимодополняющих) полинуклеотидных цепей, остов которых образуют сахарные и фосфатные остатки; к каждому сахарному остатку присоединяется по одному из четырёх азотистых оснований. Цепи соединены водородными связями, возникающими между основаниями. Водородные связи могут образоваться только между строго определёнными комплементарными основаниями: между аденином и тимином (пара АТ) и гуанином и цитозином (пара ГЦ). Этот принцип спаривания оснований объяснил, как осуществляется точная передача генетической информации от родителей потомкам (см. Репликация), с одной стороны, от ДНК к белкам (см. Трансляция и транскрипция) — с другой.
Итак, репликация Г. определяет сохранение и неизменную передачу потомкам строения участка ДНК, заключённого в данном Г. (аутокаталитическая функция, или свойство аутосинтеза). Способность задавать порядок нуклеотидов в молекулах информационной РНК (и-РНК) — гетерокаталитическая функция, или свойство гетеросинтеза — определяет порядок чередования аминокислот в синтезируемых белках. На участке ДНК. соответствующем Г., синтезируется в соответствии правилами комплементарности молекула и-РНК; соединяясь с рибосомами, она поставляет информацию для правильной расстановки аминокислот в строящейся цепи белка. Линейный размер Г. связан с длиной полипептидной цепи, строящейся под его контролем. В среднем в состав Г. входит от 1000 до 1500 нуклеотидов (0,0003—0,0005 мм). Американские исследователи А. Бреннер с сотрудниками (1964), Ч. Яновский с сотрудниками (1965) доказали, что между структурой Г. (чередованием нуклеотидов в ДНК) и строением белка, точнее полипептида (чередованием аминокислот в нём), имеется строгое соответствие (т. н. колинеарность ген — белок).
Г. может изменяться в результате мутаций, которые в общем виде можно определить как нарушение существующей последовательности нуклеотидов в ДНК. Это изменение может быть обусловлено заменой одной пары нуклеотидов другой парой (трансверсии и транзиции), выпадением нуклеотидов (делеция), удвоением (дупликация) или перемещением участка (транслокация). В результате возникают новые аллели, которые могут быть доминантными (см. Доминантность), рецессивными (см. Рецессивность) или проявлять частичную доминантность. Спонтанное мутирование Г. определяет генетическую, или наследственную, изменчивость организмов и служит материалом для эволюции.
Важным достижением генетики, имеющим большое практическое значение (см. Селекция), явилось открытие индуцированного мутагенеза, т. е. искусственного вызывания мутаций лучевыми агентами (советские биологи Г. А. Надсон и Г. С. Филипов, 1925; американский генетик Г. Мёллер, 1927) и химческими веществами (советские генетики В. В. Сахаров, 1933; М. Е. Лобашев, 1934; С. М. Гершензон, 1939; И. А. Рапопорт, 1943; английский — Ш. Ауэрбах и Г. Робсон, 1944). Мутации могут быть вызваны различными веществами (алкилирующие соединения, азотистая кислота, гидроксиламины, гидразины, красители акридинового ряда, аналоги оснований, перекиси и др.). В среднем каждый Г. мутирует у одной из 100 000—1 000 000 особей в одном поколении. Применение химических и лучевых мутагенов резко повышает частоту мутаций, так что новые мутации в определённом Г. могут появляться у одной из 100—1000 особей на поколение. Некоторые мутации оказываются летальными, т. е. лишают организм жизнеспособности. Например, в тех случаях, когда в результате мутации Г. определяемый им белок утрачивает активность, развитие особи прекращается. 1961 французские генетики Ф. Жакоб Ж. Моно пришли к выводу о существовании двух групп Г. — структурных, отвечающих за синтез специфических (ферментных) белков, и регуляторных, осуществляющих контроль за активностью структурных Г. Механизм регуляции активности Г. лучше всего изучен у бактерий. Доказано, что регуляторные Г., называемые иначе Г.-регуляторами, программируют синтез особых веществ белковой природы — репрессоров. В 1968 американские исследователи М. Пташне, В. Гильберт, Б. Мюллер-Хилл выделили в чистом виде репрессоры фага l и лактозного оперона кишечной палочки. В самом начале серии структурных Г. расположена небольшая область ДНК — оператор. Это не Г., т.к. оператор не несёт в себе информации о структуре какого-либо белка или ДНК. Оператор — это область, способная специфически связывать белок-репрессор, вследствие чего целая серия структурных Г. может быть временно выключена, инактивирована. Обнаружен ещё один элемент системы, регулирующей активность Г., — промотер, к которому присоединяется РНК-полимераза. Нередко структурные Г. ряда ферментов, связанных общностью биохимических реакций (ферменты одной цепи последовательных реакций), располагаются в хромосоме рядом. Такой блок структурных генов вместе оператором и промотером, управляющими ими и примыкающими к ним в хромосоме, образует единую систему — оперон. С одного оперона может «считываться» одна молекула и-РНК, и тогда функции разделения этой и-РНК на участки, соответствующие отдельным структурным Г. оперона, выполняются в ходе синтеза белка (в процессе трансляции). Дж. Беквит с сотрудниками (США, 1969) выделили в чистом виде индивидуальный Г. кишечной палочки, точно определили его размеры и сфотографировали его в электронном микроскопе. Х. Корана с сотрудниками (США, 1967—70) осуществили химический синтез индивидуального Г.
Феномен реализации наследственных свойств клетки и организма весьма сложен: один Г. может оказывать множественное действие — на течение многих реакций (плейотропия): взаимодействие Г. (в т. ч., находящихся в разных хромосомах) может изменять конечное проявление признака. Выражение Г. зависит также от внешних условий, влияющих на все процессы реализации генотипа в фенотип.
Лит.: Молекулярная генетика, пер. с англ., ч. 1, М., 1964; Бреслер С. Е., Введение в молекулярную биологию, 2 изд., М. — Л., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Уотсон Д. Д., Молекулярная биология гена, пер. с англ., М., 1967; Дубинин Н. П., Общая генетика, М., 1970; Сойфер В. Н., Очерки истории молекулярной генетики, М., 1970.
Н. П. Дубинин, В. Н. Сойфер.
...ген
¼ген, ¼генный (от греч. ¼genés — рождающий, рожденный), составная часть сложных слов, указывающая на происхождение от чего-либо или образование чего-либо, например гидроген, патогенный.
Гена выражение
Ге'на выраже'ние, выраженность у особи фенотипического признака, определяемого данным геном; то же, что экспрессивность.
Гена проявление
Ге'на проявле'ние, процент особей родственной группы организмов, у которых проявляется признак, определяемый данным геном; то же, что пенетрантность.