Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ" (бесплатные версии книг txt) 📗

Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ" (бесплатные версии книг txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ" (бесплатные версии книг txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Данные первого столбца таблицы 1а собраны с целью установления точности изготовления деталей, расчётный диаметр которых равен 13,40 мм, при нормальном ходе производства. Простейшим допущением, которое может быть в этом случае обосновано некоторыми теоретическими соображениями, является предположение, что диаметры отдельных деталей можно рассматривать как случайные величины X , подчинённые нормальному распределению вероятностей

  P{X <x } =

Большая Советская Энциклопедия (МА) - i-images-105208576.png
.   (1)

Если это допущение верно, то параметры a и s2 — среднее и дисперсию вероятностного распределения — можно с достаточной точностью оценить по соответствующим характеристикам статистического распределения (так как число наблюдений n = 200 достаточно велико). В качестве оценки для теоретической дисперсии s2 предпочитают не статистическую дисперсию D2 = S2/ n , а несмещенную оценку

  s2 = S2 / (n - 1).

  Для теоретического среднего квадратичного отклонения не существует общего (пригодного при любом распределении вероятностей) выражения несмещенной оценки. В качестве оценки (вообще говоря, смещенной) для s чаще всего употребляют s . Точность оценок

Большая Советская Энциклопедия (МА) - i-images-195243490.png
 и s для a и s указывается соответствующими дисперсиями, которые в случае нормального распределения (1) имеют вид

  s2a = s2/n ~ s2 / n ,

 

Большая Советская Энциклопедия (МА) - i-images-109476632.png
 ~ 2s4/n ,

 

Большая Советская Энциклопедия (МА) - i-images-157735317.png
 ~ s2 / 2n ,

где знак ~ обозначает приближённое равенство при больших n . Таким образом, уславливаясь прибавлять к оценкам со знаком ± их среднее квадратичное отклонение, имеем при больших n в предположении нормального распределения (1):

 

Большая Советская Энциклопедия (МА) - i-images-104800762.png
,  
Большая Советская Энциклопедия (МА) - i-images-109852426.png
.   (2)

Для данных первого столбца таблицы 1а формулы (2) дают

  a = 13,416 ± 0,008,

  s = 0,110 ± 0,006.

Объём выборки n = 200 достаточен для законности пользования этими формулами теории больших выборок.

  Дальнейшие сведения об оценке параметров теоретических распределений вероятностей см. в статьях Статистические оценки , Доверительные границы . О способах, при помощи которых по данным первого столбца таблицы 1а можно было бы проверить исходные гипотезы нормальности распределения и независимости наблюдений, см. в статьях Распределения , Непараметрические методы , Статистическая проверка гипотез .

  При рассмотрении данных следующих столбцов таблицы 1а, каждый из которых составлен на основе 10 измерений, употребление формул теории больших выборок, установленных лишь в качестве предельных формул при n ® ¥, может служить только для первой ориентировки. В качестве приближённых оценок параметров a и s по-прежнему употребляются величины

Большая Советская Энциклопедия (МА) - i-images-161389903.png
 и s , но для оценки точности и надёжности таких оценок необходимо применять теорию малых выборок . При сравнении по правилам М. с. выписанных в последних строках таблицы 1а значений
Большая Советская Энциклопедия (МА) - i-images-140455693.png
 и s для трёх выборок с нормальными значениями a и s, оцененными по первому столбцу таблицы, можно сделать следующие выводы: первая выборка не даёт оснований предполагать существенного изменения хода производственного процесса, вторая выборка даёт основание к заключению об уменьшении среднего диаметра а , третья выборка — к заключению об увеличении дисперсии.

  Все основанные на теории вероятностей правила статистической оценки параметров и проверки гипотез действуют лишь с определённым значимости уровнем w < 1, то есть могут приводить к ошибочным результатам с вероятностью a = 1 — w. Например, если в предположении нормального распределения и известной теоретической дисперсии s2 производить оценку a по

Большая Советская Энциклопедия (МА) - i-images-111518945.png
 по правилу

 

Большая Советская Энциклопедия (МА) - i-images-179565779.png
,

то вероятность ошибки будет равна a, связанному с k соотношением (см. таблицу 3);

  

Большая Советская Энциклопедия (МА) - i-images-141228881.png
.

  Вопрос о рациональном выборе уровня значимости в данных конкретных условиях (например, при разработке правил статистического контроля массовой продукции) является весьма существенным. При этом желанию применять правила лишь с высоким (близким к единице) уровнем значимости противостоит то обстоятельство, что при ограниченном числе наблюдений такие правила позволяют сделать лишь очень бедные выводы (не дают возможности установить неравенство вероятностей даже при заметном неравенстве частот и т. д.).

Таблица 3. — Зависимость a и w = 1 — a от k .

k 1,96 2,58 3,00 3,29
a 0,050 0,010 0,003 0,001
w 0,950 0,990 0,997 0,999

  Выборочный метод. В предыдущем разделе результаты наблюдений, используемых для оценки распределения вероятностей или его параметров, подразумевались (хотя это и не оговаривалось) независимыми (см. Вероятностей теория и особенно Независимость ). Хорошо изученным примером использования зависимых наблюдений может служить оценка статистического распределения или его параметров в «генеральной совокупности» из N объектов по произведённой из неё «выборке», содержащей n < N объектов.

  Терминологическое замечание. Часто совокупность n наблюдений, сделанных для оценки распределения вероятностей, также называют выборкой. Этим объясняется, например, происхождение употребленного выше термина «теория малых выборок». Эта терминология связана с тем, что часто распределение вероятностей представляют себе в виде статистического распределения в воображаемой бесконечной «генеральной совокупности» и условно считают, что наблюдаемые n объектов «выбираются» из этой совокупности. Эти представления не имеют отчётливого содержания. В собственном смысле слова выборочный метод всегда предполагает исходную конечную генеральную совокупность.

  Примером применения выборочного метода может служить следующий. Пусть в партии из N изделий имеется L дефектных. Из партии отбирается случайным образом n < N изделий (например, n = 100 при N = 10 000). Вероятность того, что число l дефектных изделий в выборке будет равно m , равна

  P {l = m } =

Большая Советская Энциклопедия (МА) - i-images-173078076.png

  Таким образом, l и соответствующая относительная частота h = l/n оказываются случайными величинами, распределение которых зависит от параметра L или, что то же самое, от параметра Н = L / N . Задача оценки относительной частоты Н по выборочной относительной частоте h очень похожа на задачу оценки вероятности р по относительной частоте h при n независимых испытаниях. При больших n с вероятностью, близкой к единице, в задаче об оценке вероятности имеет место приближённое равенство р ~ h , а в задаче об оценке относительной частоты — приближённое равенство H ~ h . Однако в задаче об оценке Н формулы сложнее, а отклонения h от Н в среднем несколько меньше, чем отклонения h от р в задаче об оценке вероятности (при том же n ). Таким образом, оценка доли Н дефектных изделий в партии по доле h дефектных изделий в выборке при данном объёме выборки n производится всегда (при любом N ) несколько точнее, чем оценка вероятности р по относительной частоте h при независимых испытаниях. Когда N/n ® ¥, формулы задачи о выборке переходят асимптотически в формулы задачи об оценке вероятности р . См. также Выборочный метод .

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (МА) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (МА), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*