Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ" (бесплатные версии книг txt) 📗
Чрезвычайное развитие, превосходящее предшествующие периоды не только по количеству работ, но также по совершенству и силе методов и окончательности результатов, получают в конце 19 века и в начале 20 века все разделы М., начиная с самого старого из них — теории чисел. Э. Куммер , Л. Кронекер , Р. Дедекинд, Е. И. Золотарев и Д. Гильберт закладывают основы современной алгебраической теории чисел. Ш. Эрмит в 1873 доказывает трансцендентность числа e , немецкий математик Ф. Линдеман в 1882 — числа p, Ж. Адамар (1896) и Ш. Ла Валле Пуссен (1896) завершают исследования П. Л. Чебышева о законе убывания плотности расположения простых чисел в натуральном ряду. Г. Минковский вводит в теоретико-числовые исследования геометрические методы. В России работы по теории чисел после П. Л. Чебышева блестяще развивают, кроме уже упомянутого Е. И. Золотарёва, А. Н. Коркин , Г. Ф. Вороной и А. А. Марков .
Центр тяжести алгебраических исследований переносится в её новые области: теорию групп, полей, колец и т. д. Многие из этих отделов алгебры получают глубокие применения в естествознании: в частности, теория групп — в кристаллографии, а позднее — в вопросах квантовой физики.
На границе между алгеброй и геометрией С. Ли создаёт (начиная с 1873) теорию непрерывных групп, методы которой позднее проникают во все новые области М. и естествознания.
Элементарная и проективная геометрия привлекают внимание математиков главным образом под углом зрения изучения их логических и аксиоматических основ. Но основными отделами геометрии, привлекающими наиболее значительные научные силы, становятся дифференциальная и алгебраическая геометрия . Дифференциальная геометрия евклидова трёхмерного пространства получает полное систематическое развитие в работах Э. Бельтрам , Г. Дарбу и других. Позднее бурно развивается дифференциальная геометрия различных более широких (чем группа евклидовых движений) групп преобразований и особенно дифференциальная геометрия многомерных пространств. Это направление геометрических исследований, получившее мощный импульс к развитию с возникновением общей теории относительности, создано прежде всего работами Т. Леви-Чивита , Э. Картана и Г. Вейля .
В связи с развитием более общих точек зрения теории множеств и теории функций действительного переменного теория аналитических функций в конце 19 века лишается того исключительного положения ядра всего математического анализа, которое намечается для неё в начале и середине 19 века. Однако она продолжает не менее интенсивно развиваться как в соответствии со своими внутренними потребностями, так и из-за обнаруживающихся новых связей её с другими отделами анализа и непосредственно с естествознанием. Особенно существенным в этом последнем направлении было выяснение роли конформных отображений при решении краевых задач для уравнений с частными производными (например, задачи Дирихле для уравнения Лапласа), при изучении плоских течений идеальной жидкости и в задачах теории упругости.
Ф. Клейн и А. Пуанкаре создают теорию автоморфных функций, в которой находит замечательные применения геометрия Лобачевского. Э. Пикар , А. Пуанкаре, Ж. Адамар, Э. Борель глубоко разрабатывают теорию целых функций, что позволяет, в частности, получить уже упоминавшуюся теорему о плотности расположения простых чисел. Геометрическую теорию функций и теорию римановых поверхностей развивают А. Пуанкаре, Д. Гильберт и другие. Конформные отображения находят применение в аэромеханике (Н. Е. Жуковский , С. А. Чаплыгин ).
В результате систематического построения математического анализа на основе строгой арифметической теории иррациональных чисел и теории множеств возникла новая отрасль М. — теория функций действительного переменного. Если ранее систематически изучались лишь функции, возникающие «естественно» из тех или иных специальных задач, то для теории функций действительного переменного типичен интерес к полному выяснению действительного объёма общих понятий анализа (в самом начале её развития Б. Больцано и позднее К. Вейерштрассом было, например, обнаружено, что непрерывная функция может не иметь производной ни в одной точке). Исследования по теории функций действительного переменного привели к общим определениям понятий меры множества , измеримых функций и интеграла , играющих важную роль в современной М. Основы современной теории функций действительного переменного заложили математики французской школы (К. Жордан, Э. Борель, А. Лебег , Р. Бэр), позднее ведущая роль переходит к русской и советской школе (см. Функций теория ).
Помимо своего непосредственного интереса, теория функций действительного переменного оказала большое влияние на развитие многих других отделов М. Выработанные в её пределах методы оказались особенно необходимыми при построении основ функционального анализа. Если в отношении методов функциональный анализ развивался под влиянием теории функций действительного переменного и теории множеств, то по своему содержанию и характеру решаемых в нём задач он примыкает непосредственно к классическому анализу и математической физике, становясь особенно необходимым (главным образом в форме операторов теории ) в квантовой физике. Впервые сознательное выделение функционального анализа как особой ветви М. было произведено В. Вольтерра в конце 19 века. В качестве частей функционального анализа воспринимаются теперь возникшее много ранее вариационное исчисление и теория интегральных уравнений , систематическое построение которой было начато тем же В. Вольтерра и продолжено Э. Фредгольмом . Наиболее важный специальный случай операторов в гильбертовом пространстве , основная роль которого выяснилась из работ Д. Гильберта по интегральным уравнениям, разрабатывается особенно интенсивно.
Наибольшее число задач, выдвигаемых перед М. естествознанием и техникой, сводится к решению дифференциальных уравнений, как обыкновенных (при изучении систем с конечным числом степеней свободы), так и с частными производными (при изучении непрерывных сред и в квантовой физике). Поэтому все направления исследований дифференциальных уравнений в рассматриваемый период интенсивно культивируются. Для решения сложных линейных систем создаются методы операционного исчисления. При исследовании нелинейных систем с малой нелинейностью широко применяется метод разложения по параметру. Продолжает разрабатываться аналитическая теория обыкновенных дифференциальных уравнений (А. Пуанкаре и другие). Однако наибольшее внимание в области теории обыкновенных дифференциальных уравнений привлекают теперь вопросы качественного исследования их решений: классификация особых точек (А. Пуанкаре и другие), вопросы устойчивости , особенно глубоко изученные А. М. Ляпуновым .
Качественная теория дифференциальных уравнений послужила А. Пуанкаре отправным пунктом для широкого продолжения лишь едва намеченных Б. Риманом исследований по топологии многообразий, особенно в направлении изучения неподвижных точек их непрерывных отображений на самих себя. Здесь получили своё начало «комбинаторные», «гомологические» и «гомотопические» методы современной топологии . Другое направление в топологии возникло на почве теории множеств и функционального анализа и привело к систематическому построению теории общих топологических пространств.
Теория дифференциальных уравнений с частными производными ещё в конце 19 века получает существенно новый вид благодаря сосредоточению основного внимания на краевых задачах и отказу от ограничения аналитическими краевыми условиями. Аналитическая теория, восходящая к О. Коши, К. Вейерштрассу и С. В. Ковалевской , не теряет при этом своего значения, но несколько отступает на задний план, так как обнаруживается, что при решении краевых задач она не гарантирует корректности, то есть возможности приближённо найти решение, зная граничные условия тоже лишь приближённо, в то время как без этой возможности теоретическое решение не имеет практической ценности. Картина более сложна, чем представлялось с точки зрения аналитической теории: краевые задачи, которые можно корректно ставить для разных типов дифференциальных уравнений, оказываются различными (см. Корректные и некорректные задачи ). Наиболее надёжным путеводителем в выборе для каждого типа уравнений надлежащих краевых задач становится непосредственное обращение к соответствующим физическим представлениям (о распространении волн, течении тепла, диффузии и т. п.). Связанное с этим превращение теории дифференциальных уравнений с частными производными главным образом в теорию уравнений математической физики имело большое положительное значение. Работы по отдельным типам уравнений математической физики справедливо составляют значительную часть всей математической продукции. После П. Дирихле и Б. Римана уравнениями математической физики занимались А. Пуанкаре, Ж. Адамар, Дж. Рэлей , У. Томсон , К. Нейман , Д. Гильберт, а в России А. М. Ляпунов, В. А. Стеклов и другие.