Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ" (бесплатные версии книг txt) 📗
Масс-анализаторы. В основе классификации М.-с. лежит принцип устройства масс-анализатора. Различают статические и динамические М.-с. В статических масс-анализаторах для разделения ионов используются электрические и магнитные поля, постоянные или практически не изменяющиеся за время пролёта иона через прибор. Разделение ионов является в этом случае пространственным: ионы с разными значениями m/е движутся в анализаторе по разным траекториям. В масс-спектрографах пучки ионов с разными величинами m/е фокусируются в разных местах фотопластинки, образуя после проявления следы в виде полосок (выходное отверстие ионного источника обычно делается в форме прямоугольной щели). В статических М.-с. пучок ионов с заданным m/е фокусируется на щель приёмника ионов. Масс-спектр образуется (развёртывается) при изменении магнитного или электрического поля, в результате чего в приёмную щель последовательно попадают пучки ионов с разными величинами m/е . При непрерывной записи ионного тока получается график с ионными пиками (рис. 2 ). Для получения в такой форме масс-спектра, зарегистрированного масс-спектрографом на фотопластинке, используются микрофотометры .
На рис. 3 приведена схема распространённого статического масс-анализатора с однородным магнитным полем. Ионы, образованные в ионном источнике, выходят из щели шириной S1 в виде расходящегося пучка, который в магнитном поле разделяется на пучки ионов с разными
,причём пучок ионов с массой mb фокусируется на щель S1 приёмника ионов. Величина mb /e определяется выражением:
, (1)где mb — масса иона (в атомных единицах массы ), е — заряд иона (в ед. элементарного электрического заряда ), r — радиус центральной траектории ионов (в см ), Н — напряжённость магнитного поля (в э), V — приложенная разность потенциалов (в в ), с помощью которой ускорены ионы в ионном источнике (ускоряющий потенциал).
Развёртка масс-спектра производится изменением Н или V . Первое предпочтительнее, т. к. в этом случае по ходу развёртки не изменяются условия «вытягивания» ионов из ионного источника. Разрешающая способность такого М.-с.:
(2)где s1 — ширина пучка в месте, где он попадает в щель приёмника S2 .
Если бы фокусировка ионов была идеальной, то в случае масс-анализатора, у которого X1 = X2 (рис. 3 ), s1 было бы в точности равно ширине щели источника S1 . В действительности s1 >S1 , что уменьшает разрешающую способность М.-с. Одной из причин уширения пучка является разброс в кинетической энергии у ионов, вылетающих из ионного источника. Это в большей или меньшей степени неизбежно для любого ионного источника (см. ниже). Другими причинами являются: наличие у данного пучка значительной расходимости, рассеяние ионов в анализаторе из-за столкновения с молекулами остаточного газа, «расталкивание» ионов в пучке из-за одноимённости их зарядов. Для ослабления влияния этих факторов применяют «наклонное вхождение» пучка в анализатор и криволинейные границы магнитного поля. В некоторых М.-с. применяют неоднородные магнитные поля, а также т. н. призменную оптику (см. Электронная и ионная оптика ). Для уменьшения рассеяния ионов стремятся к созданию в анализаторе высокого вакуума (£10-8мм рт. cm. в приборах со средней и высокой величиной R). Для ослабления влияния разброса по энергиям применяют М.-с. с двойной фокусировкой, которые фокусируют на щель S2 ионы с одинаковыми m/е , вылетающие не только по разным направлениям, но и с разными энергиями. Для этого ионный пучок пропускают не только через магнитное, но и через отклоняющее электрическое поле специальные формы (рис. 4 ).
Сделать S1 и S2 меньше на несколько мкм технически трудно. Кроме того, это привело бы к очень малым ионным токам. Поэтому в приборах для получения высокой и очень высокой разрешающей способности приходится использовать большие величины r и соответственно длинные ионные траектории (до нескольких м ).
В динамических масс-анализаторах для разделения ионов с разными m/е используют, как правило, разные времена пролёта ионами определённого расстояния. Существуют динамические анализаторы, в которых используется сочетание электрического и магнитного полей, и чисто электрические анализаторы. Для динамических масс-анализаторов общим является воздействие на ионные пучки импульсных или радиочастотных электрических полей с периодом, меньшим или равным времени пролёта ионов через анализатор. Предложено более 10 типов динамических масс-анализаторов, в том числе время-пролётный (1), радиочастотный (2), квадрупольный (3), фарвитрон (4), омегатрон (5), магнито-резонансный (6), циклотронно-резонансный (7). Первые четыре анализатора являются чисто электрическими, в последних трёх используется сочетание постоянного магнитного и радиочастотного электрических полей.
Во время-пролётном М.-с. (рис. 5 ) ионы образуются в ионном источнике очень коротким электрическим импульсом и «впрыскиваются» в виде «ионного пакета» через сетку 1 в анализатор 2, представляющий собой эквипотенциальное пространство. «Дрейфуя» вдоль анализатора по направлению к коллектору ионов 3, исходный пакет «расслаивается» на ряд пакетов, каждый из которых состоит из ионов с одинаковыми m/е . Расслоение обусловлено тем, что в исходном пакете энергия всех ионов одинакова, а их скорости и, следовательно, времена пролёта t анализатора обратно пропорциональны
:, (3)Здесь V — ускоряющий потенциал, L — длина анализатора. Последовательность ионных пакетов, приходящих на коллектор, образует масс-спектр, который регистрируется, например на экране осциллографа.
В радиочастотном М.-с. (рис. 6 ) ионы приобретают в ионном источнике одинаковую энергию eV и проходят через систему последовательно расположенных сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки 1, 2, 3, расположенные на равном расстоянии друг от друга. К средней сетке относительно двух крайних приложено высокочастотное электрическое w поле Uвч . При фиксированных частоте этого поля и энергии ионов eV только ионы с определённым m/е имеют такую скорость u, что, двигаясь между сетками 1 и 2 в полупериоде, когда поле между ними является ускоряющим для ионов, они пересекают сетку 2 в момент смены знака поля и проходят между сетками 2 и 3 также в ускоряющем поле. Т. о., они получают макс. прирост энергии и попадают на коллектор. Ионы других масс, проходя эти каскады, либо тормозятся полем, т. е. теряют энергию, либо получают недостаточный прирост энергии и отбрасываются в конце пути от коллектора высоким тормозящим потенциалом U3 . В результате на коллектор попадают только ионы с определённым m/е . Масса таких ионов определяется соотношением:
(4)где а — численный коэффициент, S — расстояние между сетками. Перестройка анализатора на регистрацию ионов других масс осуществляется изменением либо начальной энергии ионов, либо частоты высокочастотного поля.