Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" (книги бесплатно полные версии .txt) 📗
Проведённые рассуждения не только устраняют указанный выше парадокс, но и позволяют получить важные физические выводы. Рассмотрим взаимодействие частиц в ядрах атомов. Ядра состоят из нуклонов, т. е. протонов и нейтронов. Экспериментально установлено, что вне пределов ядра, т. е. на расстояниях, больших примерно 10–12см, взаимодействие неощутимо, хотя в пределах ядра оно заведомо велико. Это позволяет утверждать, что радиус действия ядерных сил имеет порядок L ~ 10–12см. Именно такой путь пролетают, следовательно, кванты, переносящие взаимодействие между нуклонами в атомных ядрах. Время пребывания квантов «в пути», даже если принять, что они движутся с максимально возможной скоростью (со скоростью света с), не может быть меньше, чем Dt »×L/c. Согласно предыдущему, квантовый разброс энергии DE взаимодействующих нуклонов получается равным DE ~
. В пределах этого разброса и должна лежать энергия кванта — переносчика взаимодействия. Энергия каждой частицы массы m складывается из её энергии покоя, равной mc2, и кинетической энергии, растущей по мере увеличения импульса частицы. При не слишком быстром движении частиц кинетическая энергия мала по сравнению с mc2, так что можно принять DE » mc2. Тогда из предыдущей формулы следует, что квант, переносящий взаимодействия в ядре, должен иметь массу порядка . Если подставить в эту формулу численные значения величин, то оказывается, что масса кванта ядерного поля примерно в 200—300 раз больше массы электрона.Такое полукачественное рассмотрение привело в 1935 японского физика-теоретика Х. Юкава к предсказанию новой частицы; позже эксперимент подтвердил существование такой частицы, названной пи-мезоном. Этот блистательный результат значительно укрепил веру в правильность квантовых представлений о взаимодействии как об обмене квантами промежуточного поля, веру, сохраняющуюся в значительной степени до сих пор, несмотря на то, что количественную мезонную теорию ядерных сил построить всё ещё не удалось.
Если рассмотреть 2 настолько тяжёлые частицы, что их можно считать классическими материальными точками, то взаимодействие между ними, возникающее в результате обмена квантами массы m, приводит к появлению потенциальной энергии взаимодействия частиц, равной
, (11)где r — расстояние между частицами, a g — так называемая константа взаимодействия рассматриваемых частиц с полем квантов, переносящих взаимодействие (или иначе — заряд, соответствующий данному виду взаимодействия).
Если применить эту формулу к случаю, когда переносчиками взаимодействия являются кванты электромагнитного поля — фотоны, масса покоя которых m = 0, и учесть, что вместо g должен стоять электрический заряд е, то получится хорошо известная энергия кулоновского взаимодействия двух зарядов: Uэл = е2/r.
5. Графическийметод описания процессов. Хотя в К. т. п. рассматриваются типично квантовые объекты, можно дать процессам взаимодействия и превращения частиц наглядные графические изображения. Такого рода графики впервые были введены американским физиком Р. Фейнманоми носят его имя. Графики, или диаграммы, Фейнмана, внешне похожи на изображение путей движения всех участвующих во взаимодействии частиц, если бы эти частицы были классическими (хотя ни о каком классическом описании не может быть и речи). Для изображения каждой свободной частицы вводят некоторую линию (которая, конечно, есть всего лишь графический символ распространения частицы): так, фотон изображают волнистой линией, электрон — сплошной. Иногда на линиях ставят стрелки, условно обозначающие «направление распространения» частицы. Ниже даны примеры таких диаграмм.
На рис. 1 изображена диаграмма, соответствующая рассеянию фотона на электроне: в начальном состоянии присутствуют один электрон и один фотон; в точке 1 они встречаются и происходит поглощение фотона электроном; в точке 2 появляется (испускается электроном) новый, конечный фотон. Это — одна из простейших диаграмм Комптон-эффекта.
Диаграмма на рис. 2 отражает обмен фотоном между двумя электронами: один электрон в точке 1 испускает фотон, который затем в точке 2 поглощается вторым электроном. Как уже говорилось, такого рода обмен приводит к появлению взаимодействия; т. о., данная диаграмма изображает элементарный акт электромагнитного взаимодействия двух электронов. Более сложные диаграммы, соответствующие такому взаимодействию, должны учитывать возможность обмена несколькими фотонами; одна из них изображена на рис. 3.
В приведённых примерах проявляется некоторое общее свойство диаграмм, описывающих взаимодействие между электронами и фотонами: все диаграммы составляются из простейших элементов — вершинных частей, или вершин, одна из которых (рис. 4) представляет испускание, а другая (рис. 5) — поглощение фотона электроном. Оба эти процесса в отдельности запрещены законами сохранения энергии и импульса. Однако если такая вершина входит как составная часть в некоторую более сложную диаграмму, как это было в рассмотренных примерах, то квантовая неопределённость энергии, возникающая из-за того, что на промежуточном этапе некоторая частица существует короткое время Dt, снимает энергетический запрет.
Частицы, которые рождаются, а затем поглощаются на промежуточных этапах процесса, называются виртуальными (в отличие от реальных частиц, существующих достаточно длительное время). На рис. 1 это — виртуальный электрон, возникающий в точке 1 и исчезающий в точке 2, на рис. 2 — виртуальный фотон и т.д. Часто говорят, что взаимодействие переносится виртуальными частицами. Можно несколько условно принять, что частица виртуальна, если квантовая неопределённость её энергии DE порядка среднего значения энергии частицы
, и её можно называть реальной, если DE << (для относительно медленно движущихся частиц с неравной нулю массой покоя m это условие сведется к неравенству DE << mc2).Диаграммы Фейнмана не только дают наглядное изображение процессов, но и позволяют при помощи определённых математических правил вычислять вероятности этих процессов. Не останавливаясь детально на этих правилах, отметим, что в каждой вершине осуществляется элементарный акт взаимодействия, приводящий к превращению частиц (т. е. к уничтожению одних частиц и рождению других). Поэтому каждая из вершин даёт вклад в амплитуду вероятности процесса, причём этот вклад пропорционален константе взаимодействия тех частиц (или полей), линии которых встречаются в вершине. Во всех приведённых выше диаграммах такой константой является электрический заряд е. Чем больше вершин содержит диаграмма процесса, тем в более высокой степени входит заряд в соответствующее выражение для амплитуды вероятности процесса. Так, амплитуда вероятности, соответствующая диаграммам 1 и 2 с двумя вершинами, квадратична по заряду (~ е2), а диаграмма 3 (содержащая 4 вершины) приводит к амплитуде, пропорциональной четвёртой степени заряда (~ е4). Кроме того, в каждой вершине нужно учитывать законы сохранения (за исключением закона сохранения энергии — его применимость лимитируется квантовым соотношением неопределённостей для энергии и времени): импульса (отвечающий каждой вершине акт взаимодействия может произойти в любой точке пространства, т. е. неопределённость координаты Dх= ¥, и, следовательно, импульс определён точно), электрического заряда и т.д., а также вводить множители, зависящие от спинов частиц.