Большая Советская Энциклопедия (КР) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно полностью txt) 📗
Советская К. к. осуществлена на ВДНХ СССР в Москве в 1959, а в дальнейшем (по советским проектам) — в Праге и Токио. Кинотеатр К. к. на ВДНХ представляет собой здание цилиндрической формы диаметром 25 м и высотой 15 м, зрительный зал вмещает около 500 чел. (рис.). В зале также цилиндрической формы зрители смотрят кинофильм стоя, поворачиваясь в любую сторону на 360°. Экран, расположенный по кругу, состоит из 2 ярусов — нижнего в виде замкнутого цилиндрического пояса и примыкающего к нему верхнего пояса в виде усечённого конуса. Изображение проецируют 22 (по 11 в каждом ярусе) синфазно работающих кинопроекционных аппарата. Съёмка кинофильмов для К. к. производится на 35-миллиметровую киноплёнку 11 синфазно работающими аппаратами, расположенными на одном цилиндрическом основании и обращенными объективами наружу. Оптические оси объективов располагаются на одинаковых угловых расстояниях (360°: 11 = 32,7°). Таким образом создаются условия и возможности предельного обзора объектов съёмки. Звук записывается по девятиканальной стереофонической системе. Для воспроизведения стереофонических фонограмм используются так называемые фильм-фонографы (кинопроекционные аппараты совместно со звуковоспроизводящими аппаратами). Громкоговорители располагаются по стенам зала за экранами, на потолке и в полу для создания эффекта естественного звучания.
Лит.: Голдовский Е. М., От немого кино к панорамному, М., 1961.
В. И. Ушагина.
Расположение экранов театра круговой кинопанорамы на ВДНХ СССР: 1 — секция конусообразного экрана (диаметр окружности нижнего основания конуса 17,26 м, верхнего — 15 м) в форме трапеции высотой 3,5 м с нижним основанием 4,9 м, верхним — 4,2 м; 2 — секция основного цилиндрического экрана высотой 3,5 м и с основанием 4,9 м.
Круговая поляризация
Кругова'я поляриза'ция, состояние распространяющейся электромагнитной волны (например, световой), при котором концы её электрического и магнитного векторов Е и Н в каждой точке пространства, занятого волной, описывают окружности в плоскости, перпендикулярной направлению распространения волны. См. Поляризация света.
Круговая скорость
Кругова'я ско'рость, см. в ст. Космические скорости.
Круговой процесс
Кругово'й проце'сс (цикл) в термодинамике, процесс, при котором физическая система (например, пар), претерпев ряд изменений, возвращается в исходное состояние. Термодинамические параметры и характеристические функции состояния системы (температура Т, давление р, объём V, внутренняя энергия U, энтропия S и др.) в конце К. п. вновь принимают первоначальное значение и, следовательно, их изменения при К. п. равны нулю (DU = 0 и т. д.). Все изменения, возникающие в результате К. п., происходят только в среде, окружающей систему. Система (рабочее тело) на одних участках К. п. производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn, полученных от внешних источников, а на др. участках К. п. работу над системой совершают внешние силы (часть её идёт на восстановление внутренней энергии системы). Согласно первому началу термодинамики (закону сохранения энергии), произведённая в К. п. системой или над системой работа (А) равна алгебраической сумме количеств теплоты (Q), полученных или отданных на каждом участке К. п. (DU =Q — А = 0,А = Q). Отношение А/Qn (совершённой системой работы к количеству полученной ею теплоты) называется коэффициентом полезного действия (кпд) К. п.
Различают равновесные (точнее, квазиравновесные) К. п., в которых последовательно проходимые системой состояния близки к равновесным, и неравновесные К. п., у которых хотя бы один из участков является неравновесным процессом. У равновесных К. п. кпд максимален. На рисунке дано графическое изображение равновесного (обратимого) Карно цикла, имеющего максимальное кпд.
К. п. называется прямым, если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику). К. п., результатом которого является перевод определённого количества теплоты от холодильника к нагревателю за счёт работы внешних сил, называется обратным К. п. или холодильным циклом.
К. п. сыграли в физике, химии, технике выдающуюся роль. Расчёт различных равновесных К. п. явился исторически первым методом термодинамических исследований. Этот метод дал возможность на основе анализа рабочего цикла идеальной тепловой машины (цикла Карно) получить математическое выражение второго начала термодинамики и построить термодинамическую температурную шкалу. Многие важные термодинамические соотношения (Клапейрона—Клаузиуса уравнение и др.) были получены при рассмотрении соответствующих К. п. В технике К. п. применяются в качестве рабочих циклов двигателей внутреннего сгорания, различных теплосиловых и холодильных установок (см. Цикл двигателя,Холодильные циклы).
Лит.: Кричевский И. Р., Понятия и основы термодинамики, М., 1962; Курс физической химии, под ред. Я. И. Герасимова, 2 изд., т. 1, М., 1969.
Графическое изображение прямого кругового процесса (цикла) Карно в координатах: а — объём V, давление p; б — объём V, температура Т; в — энтропия S, температура Т. Площадь ABCD пропорциональна работе цикла. Обратный цикл осуществляется в обратном порядке — ADCBA (на графике против часовой стрелки).
Круговорот веществ
Круговоро'т веще'ств на Земле, повторяющиеся процессы превращения и перемещения вещества в природе, имеющие более или менее выраженный циклический характер. Эти процессы имеют определённое поступательное движение, т. к. при так называемых циклических превращениях в природе не происходит полного повторения циклов, всегда имеются те или иные изменения в количестве и составе образующихся веществ. Понятие К. в. нередко трактовалось метафизически, как движение по замкнутому кругу, что в корне ошибочно.
Около 5 млрд. лет назад произошла дифференциация вещества Земли, разделение его на ряд концентрических оболочек, или геосфер: атмосферу, гидросферу,земную кору, гранитную, базальтовую и др. оболочки, отличающиеся друг от друга характерным химическим составом, физическими и термодинамическими свойствами. Эти оболочки в последующее геологическое время развивались в направлении дальнейшего наиболее устойчивого состояния. Между всеми геосферами и внутри каждой отдельной геосферы продолжался обмен веществом. Вначале наиболее существенную роль играл вынос вещества из недр Земли на поверхность в результате процессов выплавления легкоплавкого вещества Земли и дегазации.
Поскольку можно судить на основании сохранившихся геологических свидетельств, эта стадия обмена была ещё очень обширной в архейскую эру (см. Докембрий). В то время имели место интенсивные колебательные движения в земной коре, обширные горообразовательные процессы, создавшие повсеместно складчатость, а также энергичная вулканическая деятельность, результатом которой явились мощные слои базальтов. Широко развиты были интрузии и процессы гранитизации. Все эти процессы осуществлялись в более грандиозных масштабах, чем в последующие геологические периоды. В архейскую эру на поверхность Земли выносились вещества в значительно больших количествах и, возможно, из более глубоких областей планеты. В дальнейшем обмен веществом между глубокими областями и поверхностью Земли сократился. В конце докембрия обособились более спокойные области земной коры — платформы и области интенсивной тектонической и магматической деятельности — геосинклинали. С течением времени платформы росли, а геосинклинальные области сужались.