Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатная библиотека электронных книг .TXT) 📗

Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатная библиотека электронных книг .TXT) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатная библиотека электронных книг .TXT) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  В теории римановых пространств исследуются вопросы, касающиеся связи их метрических свойств с топологическим строением, поведение геодезических (кратчайших на малых участках) линий в целом, как, например, вопрос о существовании замкнутых геодезических, вопросы «погружения», т. е. реализации данного n-мерного риманова пространства в виде n-мерной поверхности в евклидовом пространстве какого-либо числа измерений, вопросы псевдоримановой Г., связанные с общей теорией относительности, и др. К этому можно добавить развитие разнообразных обобщений римановой Г. как в духе общей дифференциальной Г., так и в духе обобщений синтетической Г.

  В дополнение следует упомянуть алгебраическую геометрию, развившуюся из аналитической Г. и исследующую прежде всего геометрические образы, задаваемые алгебраическими уравнениями; она занимает особое место, т.к. включает не только геометрические, но также алгебраические и арифметические проблемы. Существует также обширная и важная область исследования бесконечномерных пространств, которая, однако, не причисляется к Г., а включается в функциональный анализ, т.к. бесконечномерные пространства конкретно определяются как пространства, точками которых служат те или иные функции. Тем не менее в этой области есть много результатов и проблем, носящих подлинно геометрический характер и которые поэтому следует относить к Г.

  Значение геометрии. Применение евклидовой Г. представляет самое обычное явление всюду, где определяются площади, объёмы и т.п. Вся техника, поскольку в ней играют роль формы и размеры тел, пользуется евклидовой Г. Картография, геодезия, астрономия, все графические методы, механика немыслимы без Г. Ярким примером является открытие И. Кеплером факта вращения планет по эллипсам; он мог воспользоваться тем, что эллипс был изучен ещё древними геометрами. Глубокое применение Г. представляет геометрическая кристаллография, послужившая источником и областью приложения теории правильных систем фигур (см. Кристаллография).

  Более отвлечённые геометрические теории находят широкое применение в механике и физике, когда совокупность состояний какой-либо системы рассматривается как некоторое пространство (см. раздел Обобщение предмета геометрии). Так, все возможные конфигурации (взаимное расположение элементов) механической системы образуют «конфигурационное пространство»; движение системы изображается движением точки в этом пространстве. Совокупность всех состояний физической системы (в простейшем случае — положения и скорости образующих систему материальных точек, например молекул газа) рассматривается как «фазовое пространство» системы. Эта точка зрения находит, в частности, применение в статистической физике и др.

  Впервые понятие о многомерном пространстве зародилось в связи с механикой ещё у Ж. Лагранжа, когда к трём пространств. координатам х, у, z в качестве четвёртой формально присоединяется время t. Так появляется четырёхмерное «пространство — время», где точка определяется четырьмя координатами х, у, z, t. Каждое событие характеризуется этими четырьмя координатами и, отвлеченно, множество всех событий в мире оказывается четырёхмерным пространством. Этот взгляд получил развитие в геометрической трактовке теории относительности, данной Г. Минковским, а потом в построении А. Эйнштейном общей теории относительности. В ней он воспользовался четырехмерной римановой (псевдоримановой) Г. Так геометрические теории, развившиеся из обобщения данных пространственного опыта, оказались математическим методом построения более глубокой теории пространства и времени. В свою очередь теория относительности дала мощный толчок развитию общих геометрических теорий. Возникнув из элементарной практики, Г. через ряд абстракций и обобщений возвращается к естествознанию и практике на более высокой ступени в качестве метода.

  С геометрической точки зрения многообразие пространства — времени обычно трактуется в общей теории относительности как неоднородное римановского типа, но с метрикой, определяемой знакопеременной формой, приводимой в бесконечно малой области к виду

  dx2 + dy2 + dz2 — c2dt2

  (с — скорость света в вакууме). Само пространство, поскольку его можно отделить от времени, оказывается также неоднородным римановым. С современной геометрической точки зрения лучше смотреть на теорию относительности следующим образом. Специальная теория относительности утверждает, что многообразие пространства — времени есть псевдоевклидово пространство, т. е. такое, в котором роль «движений» играют преобразования, сохраняющие квадратичную форму

  x2 + y2 + z2 — c2t2

  точнее, это есть пространство с группой преобразований, сохраняющих указанную квадратичную форму. От всякой формулы, выражающей физический закон, требуется, чтобы она не менялась при преобразованиях группы этого пространства, которые суть так называемые преобразования Лоренца. Согласно же общей теории относительности, многообразие пространства — времени неоднородно и лишь в каждой «бесконечно малой» области сводится к псевдоевклидову, т. е. оно есть пространство картановского типа (см. раздел Современная геометрия). Однако такое понимание стало возможно лишь позже, т.к. само понятие о пространствах такого типа появилось после теории относительности и было развито под её прямым влиянием.

  В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из основных противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на части и измерение представляют сопоставление дискретного и непрерывного: например, масштаб откладывается вдоль измеряемого отрезка отдельными шагами. Противоречие выявилось с. особой ясностью, когда в Древней Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т.к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа — создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.

  Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетическое мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же математическая проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.

  В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода — из сочетания выкладок и геометрических представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.

  1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем, назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.). Вариационное исчислениевозникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (ГЕ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ГЕ), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*