Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" (бесплатная библиотека электронных книг .TXT) 📗
Т. о., становится понятным, как непрерывные совокупности тех или иных объектов, явлений, состояний могут подводиться под обобщённое понятие пространства. В таком пространстве можно проводить «линии», изображающие непрерывные последовательности явлений (состояний), проводить «поверхности» и определять подходящим образом «расстояния» между «точками», давая тем самым количественное выражение физическая понятия о степени различия соответствующих явлений (состояний), и т.п. Так по аналогии с обычной Г. возникает «геометрия» абстрактного пространства; последнее может даже мало походить на обычное пространство, будучи, например, неоднородным по своим геометрическим свойствам и конечным, подобно неравномерно искривленной замкнутой поверхности.
Предметом Г. в обобщённом смысле оказываются не только пространственные формы и отношения, но любые формы и отношения, которые, будучи взяты в отвлечении от своего содержания, оказываются сходными с обычными пространственными формами и отношениями. Эти пространственно-подобные формы действительности называют «пространствами» и «фигурами». Пространство в этом смысле есть непрерывная совокупность однородных объектов, явлений, состояний, которые играют роль точек пространства, причём в этой совокупности имеются отношения, сходные с обычными пространственными отношениями, как, например, расстояние между точками, равенство фигур и т.п. (фигура — вообще часть пространства). Г. рассматривает эти формы действительности в отвлечении от конкретного содержания, изучение же конкретных форм и отношений в связи с их качественно своеобразным содержанием составляет предмет других наук, а Г. служит для них методом. Примером может служить любое приложение абстрактной Г., хотя бы указанное выше применение n-мерного пространства в физической химии. Для Г. характерен такой подход к объекту, который состоит в обобщении и перенесении на новые объекты обычных геометрических понятий и наглядных представлений. Именно это и делается в приведённых выше примерах пространства цветов и др. Этот геометрический подход вовсе не является чистой условностью, а соответствует самой природе явлений. Но часто одни и те же реальные факты можно изображать аналитически или геометрически, как одну и ту же зависимость можно задавать уравнением или линией на графике.
Не следует, однако, представлять развитие Г. так, что она лишь регистрирует и описывает на геометрическом языке уже встретившиеся на практике формы и отношения, подобные пространственным. В действительности Г. определяет широкие классы новых пространств и фигур в них, исходя из анализа и обобщения данных наглядной Г. и уже сложившихся геометрических теорий. При абстрактном определении эти пространства и фигуры выступают как возможные формы действительности. Они, стало быть, не являются чисто умозрительными конструкциями, а должны служить, в конечном счёте, средством исследования и описания реальных фактов. Лобачевский, создавая свою Г., считал её возможной теорией пространственных отношений. И так же как его Г. получила обоснование в смысле её логической состоятельности и применимости к явлениям природы, так и всякая абстрактная геометрическая теория проходит такую же двойную проверку. Для проверки логической состоятельности существенное значение имеет метод построения математических моделей новых пространств. Однако окончательно укореняются в науке только те абстрактные понятия, которые оправданы и построением искусственной модели, и применениями, если не прямо в естествознании и технике, то хотя бы в др. математических теориях, через которые эти понятия так или иначе связываются с действительностью. Лёгкость, с которой математики и физики оперируют теперь разными «пространствами», достигнута в результате долгого развития Г. в тесной связи с развитием математики в целом и других точных наук. Именно вследствие этого развития сложилась и приобрела большое значение вторая сторона Г., указанная в общем определении, данном в начале статьи: включение в Г. исследования форм и отношений, сходных с формами и отношениями в обычном пространстве.
В качестве примера абстрактной геометрической теории можно рассмотреть Г. n-мерного евклидова пространства. Она строится путём простого обобщения основных положений обычной Г., причём для этого имеется несколько возможностей: можно, например, обобщать аксиомы обычной Г., но можно исходить и из задания точек координатами. При втором подходе n-мерное пространство определяют как множество каких-либо элементов-точек, задаваемых (каждая) n числами x1, x2,¼, xn, расположенными в определённом порядке, — координатами точек. Далее, расстояние между точками Х = (x1, x2,¼, xn) и X'= (x’1, x’2,¼, х’n) определяется формулой:
что является прямым обобщением известной формулы для расстояния в трёхмерном пространстве. Движение определяют как преобразование фигуры, которое не изменяет расстояний между её точками. Тогда предмет n-мерной Г. определяется как исследование тех свойств фигур, которые не меняются при движениях. На этой основе легко вводятся понятия о прямой, о плоскостях различного числа измерений от двух до n—1, о шаре и т.д. Т. о. складывается богатая содержанием теория, во многом аналогичная обычной евклидовой Г., но во многом и отличная от неё. Нередко бывает, что результаты, полученные для трёхмерного пространства, легко переносятся с соответствующими изменениями на пространство любого числа измерений. Например, теорема о том, что среди всех тел одинакового объёма наименьшую площадь поверхности имеет шар, читается дословно так же в пространстве любого числа измерений [нужно лишь иметь в виду n-мерный объём, (n—1)-мерную площадь и n-мерный шар, которые определяются вполне аналогично соответствующим понятиям обычной Г.]. Далее, в n-мерном пространстве объём призмы равен произведению площади основания на высоту, а объём пирамиды — такому произведению, деленному на n. Такие примеры можно продолжить. С др. стороны, в многомерных пространствах обнаруживаются также качественно новые факты.
Истолкования геометрии. Одна и та же геометрическая теория допускает разные приложения, разные истолкования (осуществления, модели, или интерпретации). Всякое приложение теории и есть не что иное, как осуществление некоторых её выводов в соответствующей области явлений.
Возможность разных осуществлений является общим свойством всякой математической теории. Так, арифметические соотношения реализуются на самых различных наборах предметов; одно и то же уравнение описывает часто совсем разные явления. Математика рассматривает лишь форму явления, отвлекаясь от содержания, а с точки зрения формы многие качественно различные явления оказываются часто сходными. Разнообразие приложений математики и, в частности, Г. обеспечивается именно её абстрактным характером. Считают, что некоторая система объектов (область явлений) даёт осуществление теории, если отношения в этой области объектов могут быть описаны на языке теории так, что каждое утверждение теории выражает тот или иной факт, имеющий место в рассматриваемой области. В частности, если теория строится на основе некоторой системы аксиом, то истолкование этой теории состоит в таком сопоставлении её понятий с некоторыми объектами и их отношениями, при котором аксиомы оказываются выполненными для этих объектов.
Евклидова Г. возникла как отражение фактов действительности. Её обычная интерпретация, в которой прямыми считаются натянутые нити, движением — механическое перемещение и т.д., предшествует Г. как математической теории. Вопрос о других интерпретациях не ставился и не мог быть поставлен, пока не выявилось более абстрактное понимание геометрии. Лобачевский создал неевклидову Г. как возможную геометрию, и тогда возник вопрос о её реальном истолковании. Эта задача была решена в 1868 Э. Бельтрами, который заметил, что геометрия Лобачевского совпадает с внутренней Г. поверхностей постоянной отрицательной кривизны, т. е. теоремы геометрии Лобачевского описывают геометрические факты на таких поверхностях (при этом роль прямых выполняют геодезические линии, а роль движений — изгибания поверхности на себя). Поскольку вместе с тем такая поверхность есть объект евклидовой Г., оказалось, что геометрия Лобачевского истолковывается в понятиях геометрии Евклида. Тем самым была доказана непротиворечивость геометрии Лобачевского, т.к. противоречие в ней в силу указанного истолкования влекло бы противоречие в геометрии Евклида.