Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (КР) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно полностью txt) 📗

Большая Советская Энциклопедия (КР) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно полностью txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (КР) - Большая Советская Энциклопедия "БСЭ" (читать книги онлайн бесплатно полностью txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Уменьшение Н соответствует уменьшению прочности связи. Резкое различие величины Н для Fe и Na объясняется тем, что в первом случае существенный вклад даёт ковалентное взаимодействие.

Значения энергии структуры Н для некоторых кристаллов  с различными типами химической связи

Тип кристалла Вещество Н, ккал/моль*
Ковалентный SiC 283
Ионный NaCi 180
Металлический Fe Na 94
Молекулярный CHi 26 2,4

* 1 ккал/моль = 4,19 кдж/моль.

  Кристаллохимический анализ строения вещества имеет два аспекта: стереохимический и кристаллоструктурный. В рамках первого обсуждаются величины кратчайших межатомных расстояний и значения валентных углов. При этом пользуются понятиями координационного числа (число ближайших соседей данного атома) и координационного многогранника. Для атомов многих элементов, склонных к ковалентному характеру связи, типичны определённые координационные числа и координационные многогранники, что обусловлено направленностью ковалентных связей. Так, атом Be, за редким исключением, имеет координационное число 4 (тетраэдр); для атома Cd характерно наличие шести ближайших соседей, расположенных по октаэдру; для двухвалентного Pd — четырёх, занимающих вершины квадрата (например, в структуре PdCl2). Для объяснения подобных закономерностей обычно используются методы квантовой механики (см. Квантовая химия). Кристаллоструктурный аспект включает в себя исследование относительного расположения фрагментов структуры (и одноатомных ионов) в пространстве кристаллического вещества. В случае молекулярных кристаллов исследуется укладка молекул. Причины образования той или иной кристаллической структуры определяются общим принципом термодинамики: наиболее устойчива структура, которая при данном давлении и данной температуре имеет минимальную свободную энергию. Приближённые расчёты свободной энергии и предсказание наиболее выгодной структуры возможны пока лишь для сравнительно простых случаев, причём точность расчёта значительно ниже точности эксперимента.

  В области исследований зависимости свойств кристаллов от их строения К. перекрывается с кристаллофизикой и физикой твёрдого тела.

  Лит.: Белов Н. В., Структура ионных кристаллов и металлических фаз, [М.], 1947; Бокий Г. Б., Кристаллохимия, 3 изд., М., 1971; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Киттель Ч., Введение в физику твердого тела, пер. с англ., 2 изд., М., 1962; Ормонт Б. Ф., Введение в физическую химию и кристаллохимию полупроводников, М., 1968; Кребс Г., Основы кристаллохимии неорганических соединений, пер. с нем., М., 1971.

  П. М. Зоркий.

Кристаллы в клетках растений

Криста'ллы в клетках растений, кристаллические отложения в полостях или оболочках живых или отмерших клеток, состоящие главным образом из щавелевокислого Ca, кремнезёма — SiO2, реже — белков, каротинов и др. Встречаются: одиночные К., скопления мелких К. — «песок», сростки К. — друзы, игольчатые К. — стелоиды и рафиды. Некоторые К. присутствуют лишь в особых, более крупных клетках. К. могут заполнять клетки целиком, деформируя их. Кремнезём откладывается преимущественно в оболочках клеток, часто в кожице (хвощи, злаки). К. белка встречаются в ядрах, пластидах, алейроновых зёрнах, К. каротина — в хромопластах. Много К. скапливается в отмерших клетках листьев и коры. Форма и расположение К. специфичны для ряда растений, что может иметь значение для их систематики.

Большая Советская Энциклопедия (КР) - i008-pictures-001-293083825.jpg

Кристаллы в клетках растений: а — простой кристалл; б и в — друзы (сростки кристаллов).

Кристаллы (физич.)

Криста'ллы (от греч. krýstallos, первоначально — лёд, в дальнейшем — горный хрусталь, кристалл), твёрдые тела, имеющие естественную форму правильных многогранников (рис. 1). Эта форма — следствие упорядоченного расположения в К. атомов, образующих трёхмерно-периодическую пространственную укладку — кристаллическую решетку. К. — равновесное состояние твёрдых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определённая кристаллическая атомная структура. К. обладают той или иной симметрией атомной структуры, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией физических свойств. К., выросший в неравновесных условиях и не имеющий правильной огранки или потерявший её в результате той или иной обработки, сохраняет основной признак кристаллического состояния — решётчатую атомную структуру и все определяемые ею свойства.

  Большинство природных или технических твёрдых материалов являются поликристаллическими, они состоят из множества отдельных, беспорядочно ориентированных, мелких кристаллических зёрен, иногда называемых кристаллитами. Таковы, например, многие горные породы, технические металлы и сплавы. Одиночные кристаллы (природные или синтетические) называются монокристаллами.

  К. образуются и растут чаще всего из жидкой фазы — раствора или расплава; возможно получение К. из газовой фазы или при фазовом превращении в твёрдой фазе (см. Кристаллизация). В природе встречаются К. различных размеров — от громадных (до сотен кг) К. кварца (горного хрусталя), флюорита, полевого шпата до мелких К. алмазаи др. Для научных и технических целей разнообразные К. выращивают (синтезируют) в лабораториях и на заводах (см. Монокристаллы). Можно получить кристаллы и таких сложных природных веществ, как белки (рис. 1, в) и даже вирусы.

  Геометрия К. Выросшие в равновесных условиях К. имеют форму правильных многогранников той или иной симметрии, грани К. — плоские, ребра между гранями прямолинейные. Углы между соответствующими гранями К. одного и того же вещества постоянны (рис. 2). В этом заключается первый закон геометрии кристаллографии — закон постоянства углов (Н. Стенон, 1669). Он формулируется и так: при росте К. грани его передвигаются параллельно самим себе. Измерение межгранных углов (гониометрия), до появления рентгеноструктурного анализа широко использовавшееся как средство идентификации химического состава К. (Е. С.Федоров, Грот), не потеряло своего значения (см. Гониометр). Второй основной закон геометрии кристаллографии — закон целых чисел (см. Гаюи закон) является макроскопическим следствием микропериодичности кристаллического вещества, которое состоит из повторяющихся в пространстве элементарных ячеек, имеющих, в общем случае, форму параллелепипеда с ребрами (периодами кристаллической решётки), равными а, в, с. Всякая атомная плоскость кристаллической решётки (которой соответствует грань К.) отсекает на осях координат целые числа периодов решётки k, т, n (рис. 3). Обратные им, также целые, числа (h, k, l) называются кристаллографическими индексами граней и атомных плоскостей (см. Миллеровские индексы). Как правило, К. имеет грани с малыми значениями индексов, например (100), (110), (311) и т. д. Величины (а, в, с периодов решётки и углов между ними a, b, g измеряются рентгенографически. Выбор осей координат производится по определённым правилам в соответствии с симметрией кристалла.

  Кристаллические многогранники симметричны: их грани и ребра могут быть совмещены друг с другом с помощью операций симметрии. Каждая операция производится относительно плоскости оси или центра симметрии (рис. 4). Всего существует 32 класса симметрии кристаллических многогранников (32 точечные группы симметрии). Каждый класс характеризуется определённым набором элементов симметрии. Элементами симметрии точечных групп являются поворотные оси (рис. 4, а), центр симметрии (рис. 4, в), инверсионно поворотные оси 3, 4, 6, плоскости симметрии (рис. 4, б) (см. Симметрия кристаллов). 32 класса группируются в соответствии с наличием в них характерных элементов симметрии в семь сингоний: триклинную, моноклинную, ромбическую (низшие сингоний), тетрагональную, гексагональную, тригональную (средние), кубическую (высшая).

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (КР) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (КР), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*