Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ПА) - Большая Советская Энциклопедия "БСЭ" (читаем полную версию книг бесплатно .txt) 📗

Большая Советская Энциклопедия (ПА) - Большая Советская Энциклопедия "БСЭ" (читаем полную версию книг бесплатно .txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (ПА) - Большая Советская Энциклопедия "БСЭ" (читаем полную версию книг бесплатно .txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Парадоксы в логике . Научное понимание термина «П.», хотя и «выросло» из общеразговорного, не совпадает с ним. И поскольку в науке «нормой» естественно считать истину, то так же естественно характеризовать в качестве П. всякое отклонение от истины, т. е. ложь, противоречие . Поэтому в логике П. понимается как синоним терминов «антиномия», «противоречие»: так называют любое рассуждение, доказывающее как истинность некоторого высказывания, так и истинность его отрицания. При этом имеются в виду именно правильные (соответствующие принятым логическим нормам) умозаключения, а не рассуждения, в которых встречаются ошибки — вольные ( софизмы ) или невольные ( паралогизмы ). Различным смыслам (и различным уточнениям) понятия доказательства соответствуют и различные смыслы (различные уровни) и самого понятия «П.». В то же время анализ любого рассуждения, имеющего (или претендующего на) доказательную силу, показывает, что оно опирается на некоторые (скрытые или явные) допущения — специфические для данного рассуждения или же характерные для теории в целом (в последнем случае их обычно называют аксиомами пли постулатами ). Т. о., наличие П. свидетельствует о несовместимости данных допущений (а если речь идёт о теории, построенной посредством, аксиоматического метода , то — о противоречивости её системы аксиом; см. Непротиворечивость ). Однако устранение какого-либо допущения, даже если оно и приводит к устранению некоторого конкретного П., вовсе не гарантирует ещё устранения всех П.; с другой стороны, неосторожный отказ от слишком многих (или слишком сильных) допущений может привести к тому, что в результате получится существенно более слабая теория (см. Полнота ).

  Сколько-нибудь успешное выполнение обоих этих условий (непротиворечивости и полноты), в свою очередь, предполагает тщательное выявление всех неявно принятых в рассматриваемой научной теории предпосылок, а затем явный их учёт и формулировку. Реализация этих задач одно время возлагалась на аксиоматический метод, что нашло наиболее полное выражение в программе обоснования математики и логики, предложенной Д. Гильбертом (см. Метаматематика ). Поскольку в первую очередь рассматривалась задача устранения П., открытых на рубеже 19 и 20 вв. в теории множеств, лежащей в основании почти всей математики, пути сё решения усматривались в создании систем аксиоматической теории множеств , пригодных для достаточно полного построения математических теорий, и в последующем доказательстве непротиворечивости этих систем. Например, в одном из наиболее известных П. теории множеств — т. н. парадоксе Б. Рассела — идёт речь о множестве R всех множеств, не являющихся своими собственными элементами. Такое R является собственным элементом тогда и только тогда, когда оно не является собственным элементом. Поэтому допущение о том, что R является собственным элементом, приводит к отрицанию этого допущения, из чего следует (причём даже по правилам интуиционистской логики, т. е. без использования исключенного третьего принципа ), что R не является собственным элементом. Но отсюда уже следует (в силу предыдущей фразы), что R является собственным элементом, т. е. оба противоречащих друг другу допущения оказались доказанными, а это и есть П.

  В системах аксиоматической теории множеств Э. Цермело и Цермело — Френкеля вопрос о множестве R (является ли оно собственным элементом) попросту снимается, т.к. аксиомы этих систем не позволяют рассматривать такое R (оно в этих системах не существует). В других системах (принадлежащих Дж. фон Нейману , П. Бернайсу, К. Гёделю ) такие R рассматривать можно, но эта совокупность множеств объявляется (при помощи соответствующих ограничительных аксиом) не множеством, а только «классом», т. е. заранее объявляется, что R не может являться ничьим (в т. ч. и своим собственным) элементом, чем опять-таки аннулируется расселовский вопрос. Наконец, в различных модификациях типов теории , идущих от А. Н. Уайтхеда (Великобритания) и самого Б. Рассела (например, в системах У. О. Куайпа, США), разрешается рассматривать любые множества, описанные осмысленными языковыми выражениями, и ставить относительно таких множеств любые вопросы, но зато сами выражения вроде «множество всех множеств, не являющихся своими собственными элементами «объявляются бессмысленным и ввиду нарушения некоторых соглашений лингвистического (синтаксического) характера. Аналогичным образом в упомянутых теориях устраняются и др. известные теоретико-множественные П. (например, парадокс Г. Кантора о мощности множества всех подмножеств «множества всех множеств», которая неминуемо должна была бы оказаться больше самой себя, и пр.).

  Однако ни одна из систем аксиоматической теории множеств не решает в полной мере проблему устранения П., поскольку гильбертовская программа обоснования математики оказалась невыполнимой: в силу теоремы К. Гёделя (1931) непротиворечивость достаточно богатых аксиоматических теорий (включая формальную арифметику натуральных чисел и тем более аксиоматическую теорию множеств), если и имеет место, не может быть доказана с помощью одних лишь методов, приемлемых с точки зрения традиционной гильбертовской теории доказательств. В рамках классической математики и логики это ограничение преодолевается привлечением более сильных (в известном смысле конструктивных, но уже не «финитных» в гильбертовском понимании) средств математических рассуждений, с помощью которых удалось получить доказательства непротиворечивости формализованной арифметики (П. С. Новиков , немецкие математики Г. Генцен, В. Аккерман, К. Шютте и др.). Интуиционистская и конструктивная школы (см. Конструктивное направление в математике) вообще не считают нужным рассматривать проблему П.: используемые ими «эффективные» способы построения математических теорий приводят по существу к совершенно новым научным системам, из которых с самого начала изгнаны «метафизические» методы рассуждений и образования понятий, повинные в появлении П. в классических теориях. Наконец, в рамках ультраинтуиционистской программы обоснования математики решение проблемы П. достигается за счёт решительного пересмотра самого понятия математического доказательства, что позволило, в частности, получить доказательства непротиворечивости (в ультраинтуиционистских терминах: «недостижимости противоречия») некоторых систем аксиоматической теории множеств.

  Обсуждавшиеся до сих пор П. часто именуют «логическими», поскольку они могут быть переформулированы в чисто логических терминах. Например, парадокс Рассела выглядит тогда следующим образом. Назовем свойства, не относящиеся к самим себе («синее», «глупое» и т.п.), «импредикабельными», в отличие от «предикабельных» свойств, относящихся к себе (например, «абстрактное»). Свойство «импредикабельное» импредикабельно в том и только в том случае, когда оно предикабельно. Впрочем, некоторые логики (например, советский учёный Д. А. Бочвар) причисляют к «собственно логике» («чистой логике») только узкое исчисление предикатов (быть может, с равенством), свободное от П. (см. Логика предикатов , Логика ). П. же, с точки зрения Бочвара, возникают уже в самой теории множеств (к которой относится и расширенное исчисление предикатов) из-за неограниченного применения так называемого принципа свёртывания (или принципа абстракции), позволяющего вводить в рассмотрение множества объектов, задаваемые с помощью произвольных свойств этих объектов (см. Определение через абстракцию ). Устранение П. достигается здесь при помощи многозначной логики : парадоксальным утверждениям (типа расселовского, например) приписывается третье (наряду с истиной и ложью), истинностное значение: «бессмысленность».

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (ПА) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ПА), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*