Большая Советская Энциклопедия (АЛ) - Большая Советская Энциклопедия "БСЭ" (читать книги полные txt) 📗
Примечания. 1 Во всех сплавах в качестве примесей присутствуют Fe и Si; в ряд сплавов вводятся малые добавки Сг, Zr, Ti, Be. 2 Полуфабрикаты: Л — лист; Пф — профиль; Пр — пруток; Пк — поковка; Ш — штамповка; Пв — проволока: Т — трубы; Пл — плиты; Пн — панели: Пс — полосы; Ф — фольга. 3 Свойства получены по полуфабрикатам, показанным без скобок. 4 С добавкой 1,8—1,3% Ni и 0,8—1,3% Fe. 5 С добавкой 1,2—1,4% Li. 6 С добавкой1,9—2,3% Li. 7 С добавкой 0,2—0,4%Fe.
Двойные сплавы на основе системы Al—Mg (т. н. магналии) не упрочняются термической обработкой. Они имеют высокую коррозионную стойкость, хорошо свариваются; их широко используют при производстве морских и речных судов, ракет, гидросамолётов, сварных ёмкостей, трубопроводов, цистерн, ж.-д. вагонов, мостов, холодильников и т. д.
Сплавы Al—Mg—Si (т. н. авиали) сочетают хорошую коррозионную стойкость со сравнительно большим эффектом старения; анодная обработка позволяет получать красивые декоративные окраски этих сплавов.
Тройные Al—Zn—Mg сплавы имеют высокую прочность, хорошо свариваются, но при значительной концентрации Zn и Mg склонны к самопроизвольному коррозионному растрескиванию. Надёжны сплавы средней прочности и концентрации.
Четверные сплавы Al—Mg—Si—Cu сильно упрочняются в результате старения, но имеют пониженную (из-за Cu) коррозионную стойкость; из них изготовляют силовые узлы (детали), выдерживающие большие нагрузки. Четверные сплавы Al—Zn—Mg—Cu обладают самой высокой прочностью (до 750 Мн/м2 или до 75 кгс/мм2 ) и удовлетворительно сопротивляются коррозионному растрескиванию; они значительно более чувствительны к концентрации напряжений и повторным нагрузкам, чем дуралюмины (сплавы Al—Cu—Mg), разупрочняются при нагреве свыше 100°С. Наиболее прочные из них охрупчиваются при температурах жидкого кислорода и водорода. Эти сплавы широко используют в самолётных и ракетных конструкциях. Сплавы Al—Cu—Mn имеют среднюю прочность, но хорошо выдерживают воздействие высоких и низких температур, вплоть до температуры жидкого водорода. Сплавы Al—Cu—Li по прочности близки сплавам Al—Zn—Mg—Cu, но имеют меньшую плотность и больший модуль упругости; жаропрочны. Сплавы Al—Li—Mg при той же прочности, что и дуралюмины, имеют пониженную (на 11%) плотность и больший модуль упругости. Открытие и разработка сплавов Al—Li—Mg осуществлены в СССР. Сплавы Al—Be—Mg имеют высокую ударную прочность, очень высокий модуль упругости, свариваются, обладают хорошей коррозионной стойкостью, но их применение в конструкциях связано с рядом ограничений.
В состав деформируемых А. с. входят т. н. спечённые (вместо слитка для дальнейшей деформации используют брикет, спечённый из порошков) А. с. (в 1967 в США объём производства составил около 0,5% ). Имеются 2 группы спечённых А. с. промышленного значения: САП (спечённая алюминиевая пудра) и САС-1 (спечённый алюминиевый сплав).
САП упрочняется дисперсными частицами окиси алюминия, нерастворимой в алюминии. На частицах чрезвычайно дисперсной алюминиевой пудры в процессе помола её в шаровых мельницах в атмосфере азота с регулируемым содержанием кислорода образуется тончайшая плёнка окислов Al. Помол осуществляется с добавкой стеарина, по мере его улетучивания наряду с дроблением первичных порошков происходит их сращивание в более крупные конгломераты, в результате чего образуется не воспламеняющаяся на воздухе т. н. тяжёлая пудра с плотностью св. 1000 кг/м2 . Пудру брикетируют (в холодном и горячем виде), спекают и подвергают дальнейшей деформации — прессованию, прокатке, ковке. Прочность САП возрастает при увеличении содержания первичной окиси алюминия (возникшей на первичных порошках) до 20—22%, при большем содержании снижается. Различают (по содержанию Al2 O3 ) 4 марки САП (6—9% — САП1; 9,1—13% — САП2; 13,1—18% — САП3; 18,1—20% — САП4). Длительные выдержки САП ниже температуры плавления мало влияют на его прочность. Выше 200—250 °С, особенно при больших выдержках, САП превосходит все А. с., например при 500°С предел прочности sb =50—80 Мн /м2 (5—8 кгс/мм2 ). В виде листов, профилей, поковок, штамповок САП применяется в изделиях, где нужна высокая жаропрочность и коррозионная стойкость. САП содержит большое количество влаги, адсорбированной и прочно удерживаемой окисленной поверхностью порошков и холоднопрессованных брикетов. Для удаления влаги применяется нагрев в вакууме или нейтральной среде несколько ниже температуры плавления алюминиевых порошков или холоднопрессованных брикетов. Дегазация САП повышает его пластичность, и он удовлетворительно сваривается аргоно-дуговой сваркой.
САС-1, содержащий 25% Si и 5% Ni (или Fe), получают распылением жидкого сплава, брикетированием пульверизата, прессованием и ковкой прутков. Мельчайшие кристаллики Si и FeAl3 (NiAl3 ), воздействуя на матрицу, упрочняют сплав, повышают модуль упругости и пластичность, снижают коэффициент линейного расширения; этот эффект тем больше, чем мельче твёрдые частицы и меньше просвет между ними. Этот А. с. характеризуется низким коэффициентом линейного расширения и повышается модулем упругости. По этим характеристикам порошковые сплавы заметно превосходят соответствующие литейные А. с.
Литейные А. с. по объёму производства составляют около 20% (США, 1967). Для них особенно важны литейные характеристики — высокая жидкотекучесть, малая склонность к образованию усадочных и газовых пустот, трещин, раковин. А. А. Бочвар установил, что эти свойства улучшаются при сравнительно высоком содержании в сплаве легирующих элементов, образующих эвтектику , что приводит, однако, к некоторому повышению хрупкости сплавов. Важнейшие литейные А. с. содержат свыше 4,5% Si (т. н. силумины). Введение гомеопатических (сотые доли процента) доз Na позволяет модифицировать структуру доэвтектических и эвтектических силуминов: вместо грубых хрупких кристаллов Si появляются кристаллы сфероидальной формы и пластичность сплава существенно возрастает. Силумины (табл. 3 ) охватывают двойные сплавы системы Al—Si (АЛ2) и сплавы на основе более сложных систем: Al—Si—Mg (АЛ9), Al—Si—Си (АЛЗ, АЛ6); Al—Si—Mg—Си (АЛ5, АЛ10). Сплавы этой группы характеризуются хорошими литейными свойствами, сравнительно высокой коррозионной стойкостью, высокой плотностью (герметичностью), средней прочностью и применяются для сложных отливок. Для борьбы с газовой пористостью силуминов Бочвар и А. Г. Спасский разработали оригинальный и эффективный способ кристаллизации отливок под давлением.
К сплавам с высоким содержанием Mg (свыше 5% ) относятся двойные Al—Mg (АЛ8), сплавы системы Al—Mg—Si с добавкой Mn (АЛ13 и АЛ28), Be и Ti (АЛ22). Сплавы этой группы коррозионностойки, высокопрочны и обладают пониженной плотностью. Наиболее высокопрочен сплав АЛ8, но технология его изготовления сложна. Для уменьшения окисляемости в жидком состоянии в него вводится 0,05 — 0,07% Be, а для измельчения зерна — такое же количество Ti, в формовочную смесь для подавления реакции металла с влагой добавляется борная кислота. Сплав АЛ8 отливается главным образом в земляные формы. Сплавы АЛ13 и АЛ28 имеют лучшие литейные свойства, но меньшую прочность и не способны упрочняться термической обработкой; они отливаются в кокиль под давлением и в землю. Длительные низкотемпературные нагревы могут привести к ухудшению коррозионной стойкости литейных А. с. с высоким содержанием Mg.
Табл. 3.—Химический состав и механические свойства некоторых литейных алюминиевых сплавов (1Мн/м2 » 0, 1 кгс /мм2 ; 1 кгс/мм2 » 10 Мн/м2 )
Марка сплава | Элементы (% по массе) | Вид литья1 | Типичные механические свойства | |||||
Cu | Mg | Mn | Si | предел прочности sb , Мн/м2 | предел текучести s0,2 , MH/M2 | относит. удлинение d, % | ||
АЛ8 | 9,5-11,5 | 0,1 | 0,3 | З, В, О | 320 | 170 | 11,0 | |
АЛ2 | 0,8 | — | 0,5 | 10-13 | Все виды литья | 200 | 110 | 3,0 |
АЛ9 | 0,2 | 0,2-0,4 | 0,5 | 6-8 | » » » | 230 | 130 | 7,0 |
АЛ4 | 0,3 | 0,17-0,3 | 0,25-0,5 | 8-10,5 | » » » | 260 | 200 | 4,0 |
АЛ5 | 1,0-1,5 | 0,35-0,6 | 0,5 | 4,5-5,5 | » » » | 240 | 180 | 1,0 |
АЛЗ | 1,5-3,5 | 0,2-0,8 | 0,2-0,8 | 4,0-6,0 | Все виды литья, кроме Д | 230 | 170 | 1,0 |
АЛ25 | 1,5-3,0 | 0,8-1,2 | 0,3-0,6 | 11-13 | К | 200 | 180 | 0,5 |
АЛ30 | 0,8-1,5 | 0,8-1,3 | 0,2 | 11-13 | К | 200 | 180 | 0,7 |
АЛ7 | 4-5 | 0,03 | — | 1,2 | — | 230 | 150 | 5,0 |
АЛ1 | 3,75-4,5 | 1.25-1,75 | — | 0,7 | Все виды литья, кроме Д | 260 | 220 | 0,5 |
АЛ19 | 4,5-5,3 | 20,05 | 0,6-1,0 | 0,3 | З, О, В | 370 | 260 | 5,0 |
АЛ242 | 0,2 | 1,5-2,0 | 0,2-0,5 | 0,3 | З, О, В | 290 | — | 3,0 |