Большая Советская Энциклопедия (ГА) - Большая Советская Энциклопедия "БСЭ" (книга бесплатный формат txt) 📗
Действие полупроводниковых Г.-с. основано на образовании g -излучением в объёме полупроводникового кристалла (обычно Ge с примесью Li) электронно-дырочных пар. Возникающий при этом заряд собирается на электродах и регистрируется в виде электрического сигнала, величина которого определяется энергией g -квантов (рис. 4 ). Полупроводниковые Г.-с. обладают весьма высокой разрешающей способностью, что обусловлено малой энергией, расходуемой на образование одной электронно-дырочной пары. Для hv = 662 кэв DE/E ~ 0,5%. Эффективность полупроводниковых Г.-с. обычно ниже, чем сцинтилляционных Г.-с., т. к. g -излучение в Ge поглощается слабее, чем, например, в сцинтилляционном кристалле NaJ. Кроме того, размеры используемых полупроводниковых детекторов пока ещё невелики. К недостаткам полупроводниковых Г.-с. следует отнести также необходимость их охлаждения до температур, близких к температуре жидкого азота (подробнее см. Полупроводниковый спектрометр ).
Наивысшую точность измерения энергии g -квантов обеспечивают кристалл-дифракционные Г.-с., в которых непосредственно измеряется длина волны g -излучения. Такой Г.-с. аналогичен приборам для наблюдения дифракции рентгеновских лучей. Излучение, проходя через кристалл кварца или кальцита, отражается плоскостями кристалла в зависимости от его длины волны под тем или иным углом и регистрируется фотоэмульсией или счётчиком фотонов. Недостаток таких Г.-с. — низкая эффективность.
Для измерения спектров g -излучения низких энергии (до 100 кэв ) нередко применяются пропорциональные счётчики , разрешающая способность которых в области низких энергий значительно выше, чем у сцинтилляционного Г.-с. При hv > 100 кэв пропорциональные счётчики не используются из-за слишком малой эффективности. Измерение спектра g -излучения очень больших энергий осуществляется с помощью ливневых детекторов, которые измеряют суммарную энергию частиц электронно-позитронного ливня, вызванного g -kвантом высокой энергии. Образование ливня обычно происходит в радиаторе очень больших размеров (которые обеспечивают полное поглощение всех вторичных частиц). Вспышки флюоресценции (или черенковского излучения) регистрируются с помощью ФЭУ (см. Черенковский счётчик ).
В некоторых случаях для измерения энергии g -квантов используется процесс фоторасщепления дейтрона. Если энергия g -кванта превосходит энергию связи дейтрона (~ 2,23 Мэв ), то может произойти расщепление дейтрона на протон и нейтрон. Измеряя кинетич. энергии этих частиц, можно определить энергию падающих g -квантов.
Лит.: Альфа-, бета- и гамма-спектроскопия, пер. с англ., под ред. К. Зигбана, в. 1, М., 1969; Методы измерения основных величин ядерной физики, пер. с англ., М., 1964; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, ч. 1).
В. П. Парфенова, Н. Н. Делягин .
Рис. 4. Схема полупроводникового гамма-спектрометра.
Рис. 1. Схематическое изображение магнитного гамма-спектрометра. В магнитном поле Н , направленном перпендикулярно плоскости рисунка, вторичные электроны движутся по окружностям, радиусы которых определяются энергией электронов и полем Н . При изменении поля детектор регистрирует электроны разных энергий. Штриховкой показана защита из свинца.
Рис. 3. Схема сцинтилляционного гамма-спектрометра.
Рис. 2. Схематическое изображение парного гамма-спектрометра. В однородном магнитном поле Н , направленном перпендикулярно плоскости чертежа, электроны и позитроны движутся по окружностям в противоположных направлениях.
Гамма-спектроскопия
Га'мма-спектроскопи'я , один из разделов ядерной спектроскопии , занимающийся исследованием спектров гамма-излучения и различных свойств возбуждённых состояний атомных ядер, распад которых сопровождается испусканием g -квантов. Задачей Г.-с., как и альфа-спектроскопии и бета-спектроскопии , является изучение структуры атомных ядер (см. Ядро атомное ). Г.-с. исследует также g -излучение, возникающее в результате радиоактивного распада и ядерных реакций . Спектры g -излучения, т. е. распределение испускаемого гамма-излучения по энергиям, измеряются гамма-спектрометрами.
Гамма-терапия
Га'мма-терапи'я , кюри-терапия, совокупность методов лучевой терапии (главным образом больных со злокачественными опухолями), использующих гамма-излучение радиоактивных изотопов и др. источников. Биологическое действие излучения обусловлено величиной поглощённой энергии излучения (дозой). Распределение дозы в теле больного зависит от энергии гамма-излучения, геометрии пучка, а также от метода облучения. Применение гамма-излучения высокой энергии позволяет подводить к глубоко расположенным опухолям значительно большие дозы, чем при использовании рентгеновского излучения (см. Рентгенотерапия ) с максимальной энергией 250 кэв , при одновременном щажении поверхностно расположенных органов и тканей.
Гамма-топограф
Га'мма-топо'граф , сцинтиграф, скенер, прибор для автоматической регистрации распределения интенсивности в каком-либо органе излучения радиоактивного препарата после введения его в организм с диагностической целью. Различают универсальный Г.-т. для всех видов гамма-топографии; Г.-т. для изучения отдельных участков тела с полем скенирования 40 ´ 40 см ; специализированные Г.-т. с 2 детекторами, сложной программой скенирования (дуги с переменной длиной) для диагностики опухолей мозга. Г.-т. состоит из детектора (счётчика) гамма-излучения, перемещаемого над больным по строкам или дугам электронного устройства, преобразующего сигналы счётчика в пригодную для регистрации форму. В зависимости от конструкции прибора регистрация может проводиться в виде: а) простой штриховой отметки на бумаге через копирку или машинописную лепту; б) фотозаписи при помощи источника света на фотоплёнку или на рентгеновскую плёнку с непроявленным рентгеновским снимком изучаемой области тела (совмещенные рентгено- и гамма-топограммы); в) на магнитную плёнку с последующей обработкой информации; г) разноцветными штриховыми или световыми отметками. Получаемые данные (скенограммы) позволяют судить о форме, положении, размерах и функции органа. См. также Радиоизотопная диагностика .
Гамма-установка
Га'мма-устано'вка в медицине, радиевая (кобальтовая) «пушка», телерадиотерапевтическая установка, аппарат для дистанционной гамма-терапии , главным образом злокачественных опухолей. Принцип действия Г.-у. (см. рис. ) — применение направленного, регулируемого по сечению пучка гамма-излучения. Г.-у. снабжена защитным контейнером (головкой) из свинца, вольфрама или урана, содержащим источник излучения (обычно 60 Co, реже 137 Cs; раньше применяли радий). Окно в головке, снабженное диафрагмой, позволяет получать поля облучения необходимой формы и размеров и перекрывать пучок излучения в нерабочем положении Г.-у. Различают длинно- и короткофокусные Г.-у. В короткофокусных Г.-у. (расстояние от источника излучения до кожи больного менее 25 см ), предназначенных для облучения опухолей, расположенных не глубже 3—4 см , используют обычно источники активностью до 100 кюри . Длиннофокусные Г.-у. (расстояние между источником и кожей 70—100 см ) применяют для облучения глубоко залегающих опухолей; источником излучения в них служит обычно 60 Co активностью несколько тыс. кюри; они создают выгодное распределение дозы. Различают длиннофокусные Г.-у. для статического и подвижного облучения; в последних источник излучения может либо вращаться вокруг одной оси, совершая вращение (ротацию) или качание на заданный угол (ротационные Г.-у.), либо одновременно перемещаться вокруг трёх взаимно перпендикулярных осей, описывая при этом шаровую поверхность (ротационно-конвергентные Г.-у.). Подвижным облучением достигается концентрация поглощённой дозы в подлежащем лечебному воздействию очаге с сохранением от повреждения здоровых тканей. Г.-у. размещают в помещении, стены которого сделаны из специальных материалов, защищающих окружающее пространство от гамма-излучения.