Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ" (читаем бесплатно книги полностью .txt) 📗
Добавление к схеме четвёртого кварка (и, если окажется необходимым, новых дополнительных кварков) осуществляется при сохранении основного предположения кварковой модели о строении адронов:
В = (qqq ).
Все экспериментальные данные хорошо соответствуют приведённому кварковому составу адронов. Имеются, видимо, лишь небольшие отклонения от этой структуры, которые не влияют существенным образом на свойства адронов.
Указанная структура адронов и математические свойства кварков, как объектов, связанных с определённым (простейшим) представлением группы SU (4), приводят к след. квантовым числам кварков (табл. 2). Обращают внимание необычные — дробные — значения электрического заряда Q , а также В, S и Y , не встречающиеся ни у одной из наблюдавшихся Э. ч. С индексом a у каждого типа кварка qi (i = 1, 2, 3, 4) связана особая характеристика кварков — «цвет», которой нет у изученных адронов. Индекс a принимает значения 1, 2, 3, т, е. каждый тип кварка qi представлен тремя разновидностями qia (Н. Н. Боголюбов с сотрудниками, 1965; американские физики И. Намбу и М. Хан, 1965; японский физик И. Миямото, 1965). Квантовые числа каждого типа кварка не меняются при изменении «цвета» и поэтому табл. 2 относится к кваркам любого «цвета».
Табл. 2. — Характеристики кварков
Кварк | Символ | J | I | I3 | S | B | Y | Ch | Q |
q1a | pa | 1 /2 | 1 /2 | + 1 /2 | 0 | 1 /3 | 1 /3 | 0 | 2 /3 |
q2a | na | 1 /2 | 1 /2 | - 1 /2 | 0 | 1 /3 | 1 /3 | 0 | -1 /3 |
q3a | la | 1 /2 | 0 | 0 | -1 | 1 /3 | -2 /3 | 0 | -1 /3 |
q4a | ca | 1 /2 | 0 | 0 | - 1 /3 | 1 /3 | 0 | 1 | 2 /3 |
Необходимость введения «цвета» вытекает из требования антисимметрии волновой функции системы кварков, образующих барионы. Кварки, как частицы со спином 1 /2 , должны подчиняться статистике Ферми — Дирака.
Между тем имеются барионы, составленные из трёх одинаковых кварков, с одинаковой ориентацией спинов: D++ (p р р ), W+ (l l l ), которые явно симметричны относительно перестановок кварков, если последние не обладают дополнительной степенью свободы. Такой дополнительной степенью свободы и является «цвет». С учётом «цвета» требуемая антисимметрия легко восстанавливается. Уточнённые формулы структурного состава мезонов и барионов выглядят при этом следующим образом:
,где eabg — полностью антисимметричный тензор (
, — нормировочные множители). Важно отметить, что ни мезоны, ни барионы не несут цветовых индексов (лишены цвета) и являются, как иногда говорят, «белыми» частицами.В табл. 2 не приведены массы кварков. Это связано с тем, что кварки пока выступают лишь как составные части адронов, — в свободном состоянии они не наблюдались, поэтому прямых данных о массах кварков нет. На основании величин масс различных связанных состояний кварков (обычные, странные, очарованные адроны) можно только заключить, что mp ~ mn < ml << mc .
Всё многообразие адронов возникает за счёт различных сочетаний р -, п-, g- и с -кварков, образующих связанные состояния. Обычным адронам соответствуют связанные состояния, построенные только из р- и n -кварков [для мезонов с возможным участием комбинаций
и ]. Наличие в связанном состоянии наряду с р - и n -кварками одного g- или с -кварка означает, что соответствующий адрон странный (S = —1) или очарованный (Ch = + 1). В состав бариона может входить два и три g -кварка (соответственно с -кварка), т. е. возможны дважды и трижды странные (очарованные) барионы. Допустимы также сочетания различного числа g- и с- кварков (особенно в барионах), которые соответствуют «гибридным» формам адронов («странно-очарованным»). Очевидно, что чем больше g- или с -кварков содержит адрон, тем он тяжелее. Если сравнивать основные (не возбуждённые) состояния адронов, именно такая картина и наблюдается (см. табл. 1, а также табл. 3 и 5).Поскольку спин кварков равен 1 /2 , приведённая выше кварковая структура адронов имеет своим следствием целочисленный спин у мезонов и полуцелый — у барионов, в полном соответствии с экспериментом. При этом в состояниях, отвечающих орбитальному моменту l = 0, в частности в основных состояниях, значения спина мезонов должны равняться 0 или 1 (для антипараллельной ¯ и параллельной ориентации спинов кварков), а спина барионов — 1 /2 или 3 /2 (для спиновых конфигураций ¯ и ). С учётом того, что внутренняя чётность системы кварк-антикварк отрицательна, значения JP для мезонов при l = 0 равны 0- и 1- , для барионов — 1 /2+ и 3 /2+ . Именно эти значения JP наблюдаются у адронов, имеющих наименьшую массу при заданных значениях I и Y (см. табл. 1).
Поскольку индексы i, k, l в структурных формулах пробегают значения 1, 2, 3, 4, число мезонов Mik с заданным спином должно быть равно 16. Для барионов Bikl максимально возможное число состояний при заданном спине (64) не реализуется, т. к. в силу принципа Паули при данном полном спине разрешены только такие трёхкварковые состояния, которые обладают вполне определённой симметрией относительно перестановок индексов i, k, 1, а именно: полностью симметричные для спина 3 /2 и смешанной симметрии для спина 1 /2 . Это условие при l = 0 отбирает 20 барионных состояний для спина 3 /2 и 20 — для спина 1 /2 .
Более подробное рассмотрение показывает, что значение кваркового состава и свойств симметрии кварковой системы даёт возможность определить все основные квантовые числа адрона (J, Р, В, Q, I, Y, Ch ), за исключением массы; определение массы требует знания динамики взаимодействия кварков и массы кварков, которое пока отсутствует.