Mybrary.info
mybrary.info » Книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ВА) - Большая Советская Энциклопедия "БСЭ" (книги онлайн без регистрации txt) 📗

Большая Советская Энциклопедия (ВА) - Большая Советская Энциклопедия "БСЭ" (книги онлайн без регистрации txt) 📗

Тут можно читать бесплатно Большая Советская Энциклопедия (ВА) - Большая Советская Энциклопедия "БСЭ" (книги онлайн без регистрации txt) 📗. Жанр: Энциклопедии. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

 

Большая Советская Энциклопедия (ВА) - i-images-129559979.png

  Пусть теперь x (t ) реализует экстремум. Тогда функция J*(e) имеет экстремум при e = 0. Поэтому величина dJ должна обратиться в нуль. Отсюда следует: для того чтобы функция x (t ) доставляла экстремум функционалу (1), необходимо, чтобы она удовлетворяла уравнению

 

Большая Советская Энциклопедия (ВА) - i-images-151879090.png

  называемому уравнением Эйлера.

  Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.

  Уже во 2-й половине 18 в. круг задач, изучаемых В. и., значительно расширился. Прежде всего основные результаты, относящиеся к простейшей задаче В. и., были перенесены на общий случай интегральных функционалов вида

 

Большая Советская Энциклопедия (ВА) - i-images-184005742.png

  где x (t ) вектор-функция произвольной размерности, и на функционалы ещё более общего вида.

  Условный экстремум. Задача Лагранжа. В конце 18 в. был сформулирован ряд задач на условный экстремум. Этим термином принято называть задачи отыскания функции x (t ), доставляющей экстремум функционалу J (x ) при каких-либо дополнительных условиях, кроме условий на концах интервала (t , T). Простейшей задачей подобного вида является класс так называемых изопериметрических задач . Своим названием этот класс задач обязан следующей: среди всех замкнутых кривых данной длины найти ту, которая ограничивает максимальную площадь.

  Значительно более сложной задачей является та, в которой ограничения носят характер дифференциальных уравнений. Эту задачу называют задачей Лагранжа; особое значение она приобрела в середине 20 в. в связи с созданием теории оптимального управления . Поэтому её формулировка даётся ниже на языке этой теории, возникшем после работ Л. С. Понтрягина и его учеников.

  Пусть x (t) и u (t) — вектор-функции размерностей n и m соответственно, причём функция x (t ), которую называют фазовым вектором, при t = to и t = T удовлетворяет граничным условиям:

  x (t ) Î e , x (T) Î eT      (5)

  где e и eT — некоторые множества. Простейшим примером условий типа (5) являются условия (2). Функция x (t ) и функция u (t ), которую называют управлением, связаны условием

  dx/dt = f (x, u, t),     (6)

  где f — дифференцируемая вектор-функция своих аргументов. Рассматриваемая задача состоит в следующем: определить функции x (t ) и u (t ), доставляющие экстремум функционалу

 

Большая Советская Энциклопедия (ВА) - i-images-144202473.png

  Заметим, что и простейшая задача В. и. и изопериметрическая задача являются частным случаем задачи Лагранжа.

  Задача Лагранжа имеет огромное прикладное значение. Пусть, например, уравнение (6) описывает движение какого-либо динамического объекта, например космического корабля. Управление u — это вектор тяги его двигателя. Множества e и eT — это две орбиты разных радиусов. Функционал (7) описывает расход горючего на выполнение маневра. Следовательно, задачу Лагранжа, применительно к данной ситуации, можно сформулировать следующим образом: определить закон изменения тяги двигателя космического аппарата, совершающего переход с орбиты e на орбиту eT за заданное время так, чтобы расход топлива на этот маневр был минимальным.

  Важную роль в теории подобных задач играет функция Гамильтона

  H (x, y, u) = (f, y) - F.

  Здесь y — вектор, называется множителем Лагранжа (или импульсом), (f, y) означает скалярное произведение векторов f и y . Необходимое условие в задаче Лагранжа формулируется следующим образом: для того чтобы функции

Большая Советская Энциклопедия (ВА) - i-images-170641252.png
 и
Большая Советская Энциклопедия (ВА) - i-images-116295910.png
 были решением задачи Лагранжа, необходимо, чтобы
Большая Советская Энциклопедия (ВА) - i-images-184761954.png
 была стационарной точкой функции Гамильтона Н (х, y,u), то есть, чтобы при

 

Большая Советская Энциклопедия (ВА) - i-images-115014854.png

  было ¶H/u = 0, где y — не равное тождественно нулю решение уравнения

  ¶y/t = —¶H/¶x = j(x, y, u, t).      (8)

  Эта теорема имеет важное прикладное значение, так как она открывает известные возможности для фактического нахождения векторов x (t ) и u (t ).

  Развитие В. и. в 19 в. Основные усилия математиков в 19 в. были направлены на исследование условий, необходимых или достаточных для того, чтобы функция x (t ) реализовала экстремум функционала J (x ). уравнение Эйлера было первым из таких условий; оно аналогично необходимому условию

 

Большая Советская Энциклопедия (ВА) - i-images-190341339.png

  которое устанавливается в теории функций конечного числа переменных. Однако в этой теории известны ещё и другие условия. Например, для того, чтобы функция f (x ) имела в точке

Большая Советская Энциклопедия (ВА) - i-images-116706371.png
 минимум, необходимо, чтобы в этой точке было

 

Большая Советская Энциклопедия (ВА) - i-images-132493309.png

  каков бы ни был произвольный вектор h. Естественно поставить вопрос: в какой степени эти результаты переносятся на случай функционалов? Для того чтобы представить себе сложность, которая здесь возникает, заметим, что функция

Большая Советская Энциклопедия (ВА) - i-images-179468519.png
 может реализовать минимум среди функций одного класса и не давать минимум среди функций другого класса и т.д.

  Подобные вопросы послужили источником разнообразных и глубоких исследований А. Лежандра , К. Якоби , М. В. Остроградского , У. Гамильтона , К. Вейерштрасса и многих других. Эти исследования не только обогатили математический анализ, но и сыграли большую роль в формировании идей аналитической механики и оказали серьезное влияние на развитие разнообразных отделов теоретической физики.

  Развитие В. и. в 20 в. В 20 в. возник целый ряд новых направлений В. и., связанных с интенсивным развитием техники, смежных вопросов математики и вычислительной техники. Одно из основных направлений развития В. и. в 20 в. — рассмотрение неклассических задач В. и., приведшее к открытию принципа максимума Л. С. Понтрягина.

Перейти на страницу:

Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку

Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Большая Советская Энциклопедия (ВА) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ВА), автор: Большая Советская Энциклопедия "БСЭ". Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*