Оглянись – пришельцы рядом! - - (лучшие книги .txt) 📗
Дабы пояснить вам, что имеется в виду, я разобрал отрывок из книги Александра Горбовского «Факты, догадки, гипотезы» [5]. Замечу сразу, что не собираюсь обижать Горбовского; он написал неплохой научно-популярный труд со множеством любопытных фактов, и не его вина, что он – историк, а не математик, не физик или астроном.
Собственно, в книге Горбовского не упоминаются пришельцы, но я все-таки считаю ее уфологической – и вот по какой причине. В ней рассмотрены загадки древних цивилизаций и, в частности, их необъяснимые таинственные достижения в астрономии и космологии, в математике и металлургии, в архитектуре и географии. Горбовский полагает, что, быть может, на Земле существовала некогда высокоразвитая цивилизация, погибшая во время планетарной катастрофы, и что знания древних – отзвук ее былых достижений. Эта обветшалая гипотеза общеизвестна; она кочует из книги в книгу, от Блавацкой к Мулдашеву, но есть и другая, апологетом которой является Дэникен [2]: что наши предки – до всемирного Потопа или в историческую эпоху – имели контакты с инопланетянами и что пришельцы передали им некий объем научных знаний. Так что факты, изложенные Горбовским, можно трактовать по-разному, и в «уфологическом», и в «земном» смысле.
Лично я считаю, что от перемены мест слагаемых сумма не меняется. Я готов приветствовать обе гипотезы (не верить в них, а признать их законное право на существование), если только факты, на которых они базируются более или менее достоверны. Еще раз напомню читателям, что достоверность уфологических фактов нас, собственно, не интересует, и я проведу разбор отрывка из книги Горбовского лишь затем, чтобы яснее продемонстрировать используемый нами логический метод. Или, если угодно, собственный здравый смысл.
Я выбрал отрывок, который озаглавлен «математика», и сделал это по двум причинам: во-первых, он невелик по объему, и я могу процитировать его полностью; во-вторых, спекуляции с математикой весьма опасны для неспециалиста. Математика – строгая дисциплина; тут каждый термин имеет свое определенное значение и должен стоять на своем месте. Я, как и Горбовский, не являюсь профессиональным математиком, но все же я – физик и вычислитель, а не историк, и мне легче разобраться с загадочными математическими познаниями древних.
Итак, цитирую Горбовского [5]:
«Математика. К числу сведений, восходящих к весьма отдаленному прошлому, относятся, очевидно, и необъяснимо высокие познания древних в области математики, тоже не являвшиеся результатом их практической деятельности, которая была бы известна нам. Понятие «миллион», отмечает К.Керам, было принято в европейской математике только в XIX веке. Но оно было известно древним египтянам, имевшим даже специальный знак для его обозначения.
Число «пи» известно в истории математики как «число Лудольфа» – голландского ученого XVII века, рассчитавшего соотношение длины окружности к ее диаметру. Однако в Москве в Музее изобразительных искусств имени Пушкина хранится египетский папирус, из которого явствует, что египтянам давно было известно число «пи» [13, с.146, 293].
Но оказывается, еще до египтян число это было известно в Шумере. Знали в Шумере и теорему, которую тысячу лет спустя открыл Пифагор. Ученые жрецы и хранители знаний Древнего Шумера решали сложные алгебраические задачи, квадратные уравнения с несколькими неизвестными, задачи на сложные проценты и даже задачи, выходившие за пределы алгебры [25, с. 50]. Они предавались этим занятиям среди окружавшей дикости и варварства их эпохи. Писали они деревянными палочками на влажной глине, и то, что они делали, надолго опережало как практические потребности жизни, так и общий уровень знаний. Мы снова видим высокие познания, появляющиеся как бы внезапно и на уровень которых человечество выходит только тысячелетия спустя. Достаточно сказать, что среди клинописных текстов, найденных в Шумере, содержится математический ряд, конечный итог которого выражается числом 195 955 200 000 000. Это было число, которым, по мнению специалистов, европейская наука не умела оперировать даже во времена Декарта и Лейбница [13, с. 293]».
На первый взгляд все выглядит вроде бы пристойно, но не доверяйте первому впечатлению: большая часть приведенного выше текста из книги Горбовского является бредом. Чтобы легче было с ним разобраться, я снова воспроизведу отрывок, разбив его на фрагменты и пронумеровав их, чтобы подготовить для последующего анализа.
Цитирую еще раз:
«Математика. К числу сведений, восходящих к весьма отдаленному прошлому, относятся, очевидно, и необъяснимо высокие познания древних в области математики, тоже не являвшиеся результатом их практической деятельности, которая была бы известна нам.
1. Понятие «миллион», отмечает К.Керам, было принято в европейской математике только в XIX веке. Но оно было известно древним египтянам, имевшим даже специальный знак для его обозначения.
2. Число «пи» известно в истории математики как «число Лудольфа» – голландского ученого XVII века, рассчитавшего соотношение длины окружности к ее диаметру. Однако в Москве в Музее изобразительных искусств имени Пушкина хранится египетский папирус, из которого явствует, что египтянам давно было известно число «пи» [13, с. 146, 293]. Но оказывается, еще до египтян число это было известно в Шумере.
3. Знали в Шумере и теорему, которую тысячу лет спустя открыл Пифагор.
4. Ученые жрецы и хранители знаний Древнего Шумера решали сложные алгебраические задачи, квадратные уравнения с несколькими неизвестными, задачи на сложные проценты и даже задачи, выходившие за пределы алгебры [25, с. 50].
5. Они предавались этим занятиям среди окружавшей дикости и варварства их эпохи. Писали они деревянными палочками на влажной глине, и то, что они делали, надолго опережало как практические потребности жизни, так и общий уровень знаний.
6. Мы снова видим высокие познания, появляющиеся как бы внезапно и на уровень которых человечество выходит только тысячелетия спустя. Достаточно сказать, что среди клинописных текстов, найденных в Шумере, содержится математический ряд, конечный итог которого выражается числом 195 955 200 000 000. Это было число, которым, по мнению специалистов, европейская наука не умела оперировать даже во времена Декарта и Лейбница [13, с. 293]».
Мы отложим анализ первого и шестого пунктов, поскольку отмеченные в них факты содержатся в книге Курта Керама «Боги, гробницы, ученые» – превосходной книге, должен отметить, но не лишенной многих недостатков. До Керама мы еще доберемся, а пока проанализируем пункт второй, касающийся числа «пи».
Вас не удивляет, что египтяне умели производить папирус, материал для письма, более долговечный, чем бумага, и доживший до наших времен? Что у них была довольно высокоразвитая медицина – они знали о многих болезнях, некоторые лечили и даже делали операции [5]? Что те же египтяне и жители Шумера производили медные орудия, ткани, глиняные горшки, строили гигантские ирригационные сооружения? А ведь это весьма сложные технологические процессы! Попробуйте-ка выплавить медь и отковать из нее клинок или сделать глиняный кувшин – уверяю вас, такая задача под силу только профессионалу! Гораздо легче определить приближенное значение числа «пи». Для этого нам необходимы два колышка, веревка и ножик, чтобы эту веревку разрезать. Выберем ровное место, воткнем один колышек в почву, привяжем к нему веревкой другой и, натягивая веревку, опишем концом этого колышка окружность на земле. Уложим вдоль окружности еще один кусок веревки и обрежем его; длина этого куска равна длине окружности. Другим куском веревки измерим диаметр, а затем сравним длину обоих кусков. Мы выясним, что большой кусок (длина окружности) превосходит малый (диаметр) в три целых и одну седьмую раза, что является неплохим приближением для трансцендентного числа «пи» = 3,1415… Выполнить описанную мной работу гораздо легче, чем сделать глиняный горшок – тем более, ученым жрецам, служителям культа.
5
О медицинских познаниях египтян нам известно, в частности, из папируса Эберса (примерно 1500 лет до н.э.). Я ознакомился с его английским переводом (перевода на русский нет) и свидетельствую, что это поразительный документ. Отрывок из данного папируса, касающийся сахарного диабета, приведен в книге Х.Астамировой, М.Ахманова «Большая энциклопедия диабетика». Вообще же с древнеегипетскими загадками и тайнами я познакомился в тот период, когда писал роман «Страж фараона» и пользовался консультациями известного египтолога с Восточного факультета Петербургского госуниверситета. Египтяне действительно умели так много! Но еще поразительней то, чего они не умели. Так, их достижения в математике весьма скромны – они не ведали привычных нам алгоритмов деления и умножения, знали только два математических действия, сложение и вычитание, а также простые дроби типа 1/2, 1/3, 1/4 и так далее. Умножение заменялось многократным сложением, деление – примерным подбором ответа и проверкой с помощью многократного сложения, подходит ли этот ответ. Действия, которые покажутся элементарными школьнику наших дней, занимали у египетских «специалистов» долгие часы. Если что и достойно восхищения, так их трудолюбие.