Ткань космоса. Пространство, время и текстура реальности - Грин Брайан (книги онлайн бесплатно без регистрации полностью .txt) 📗
Ответ на этот вопрос таков: инфляция может легко это сделать, даже особо не утруждаясь. Как уже объяснялось, поле инфлатона является гравитационным паразитом — оно питается гравитацией, — так что полная энергия поля инфлатона возрастает, по мере того как пространство расширяется. Более точно, математика показывает, что плотность энергии поля инфлатона остаётся постоянной в течение фазы быстрого инфляционного расширения, откуда следует, что заключённая в нём полная энергия растёт прямо пропорционально объёму заполненного им пространства. В предыдущей главе мы видели, что размер Вселенной в ходе инфляции возрастает как минимум в 10 30раз, а это означает, что объём Вселенной возрастает по меньшей мере в (10 30) 3= 10 90раз. Соответственно, заключённая в поле инфлатона энергия возрастёт в то же гигантское число раз: когда инфляционная фаза подходит к концу, примерно через 10 ?35с после её начала, энергия поля инфлатона возрастает по порядку в 10 90раз, если не больше. Это означает, что в начале инфляции полю инфлатона не нужно иметь много энергии, поскольку гигантское расширение, порождённое инфлатоном, гигантски увеличит заключённую в нём энергию.Простой расчёт показывает, что крохотный кусочек пространства, порядка 10 ?26см в поперечнике, заполненный однородным полем инфлатона — и весящий всего десять килограммов — в ходе последующего инфляционного расширения приобретает такое количество энергии, которого хватает на всё, что мы видим во Вселенной сегодня. {149}
Таким образом, в полной противоположности со стандартной теорией Большого взрыва, в которой полная материя/энергия ранней Вселенной была невыразимо огромной, инфляционная космология путём «разработки залежей» гравитации может произвести всю обыкновенную материю и излучение Вселенной из крохотного десятикилограммового кусочка заполненного инфлатоном пространства. Это ни в коем случае не отвечает на вопрос Лейбница о том, почему существует нечто вместо ничего, так как ещё необходимо объяснить, почему имелся инфлатон или даже само пространство, которое он занимал. Но то, что всё ещё требует объяснения, весит много меньше, чем моя собака Рокки, и это определённо совсем другая стартовая позиция по сравнению с той, что предусмотрена стандартной моделью Большого взрыва [71].
Инфляция, гладкость и стрела времени
Может быть мой энтузиазм уже выдал мои пристрастия, но из всех успехов, которые наука достигла в наше время, достижения космологии наполняют меня наибольшим трепетом и смирением. Мне кажется, я никогда не утрачивал то возбуждение, которое я первый раз испытал много лет назад, когда впервые изучал основы общей теории относительности и понял, что из нашего крохотного уголка пространства-времени, применив теорию Эйнштейна, мы можем изучать эволюцию всего космоса. Теперь, несколько десятилетий спустя, технологический прогресс позволил подвергнуть эти некогда абстрактные предположения о поведении Вселенной в свои самые ранние моменты проверке наблюдениями, и теория на самом деле работает.
Напомним, однако, что помимо общей важности космологии для понимания пространства и времени, в главах 6 и 7 мы взялись за изучение ранней истории Вселенной со специальной целью: найти истоки стрелы времени. Вспомним из этих глав, что единственные убедительные рамки, которые мы нашли для объяснения стрелы времени, заключались в том, что ранняя Вселенная была чрезвычайно упорядоченной, т. е. имела экстремально низкую энтропию, что сделало возможным будущее, в котором энтропия всегда увеличивается. Точно так же, как страницы романа «Война и мир»невозможно было бы привести в состояние большего беспорядка, если бы они не были в некоторый момент аккуратно сложены, так и Вселенная тоже не обладала бы способностью становиться всё более разупорядоченной — молоко не могло бы разливаться, яйца не могли разбиваться, люди стареть — без того, чтобы она имела высокоупорядоченную конфигурацию в начале. Загадка, с которой мы столкнулись, заключается в объяснении, как могла возникнуть эта высокоупорядоченная низкоэнтропийная стартовая точка.
Инфляционная космология предлагает существенный прогресс в этом вопросе, но позвольте мне сначала более точно напомнить вам загадку на случай, если некоторые существенные детали ускользнули от вашего внимания.
Имеются убедительные свидетельства, что в ранней истории Вселенной материя была распределена по пространству однородно. Как правило, это соответствует высокоэнтропийной конфигурации — вроде молекул углекислого газа, разлетевшихся по всей комнате из бутылки колы, — и потому могло бы оказаться настолько банальным, что едва ли потребовало объяснения. Но когда существенна гравитация, как это имеет место при рассмотрении целой Вселенной, однородное распределение материи является редкой, низкоэнтропийной, высокоупорядоченной конфигурацией, поскольку гравитация заставляет материю собираться в отдельные сгустки. Аналогично, гладкое и однородное пространство также имеет очень низкую энтропию; оно является высокоупорядоченным по сравнению с пространством, характеризующимся безумно скачущей, неоднородной пространственной кривизной. (Точно так же, как для страниц романа «Война и мир»имеется много способов быть разупорядоченными, но только один способ быть упорядоченными, имеется много способов для пространства иметь разупорядоченную, неоднородную форму, но очень мало способов, в которых оно может быть упорядоченным, гладким и однородным.) Так что мы остаёмся с загадкой: почему ранняя Вселенная имела низкоэнтропийное (высокоупорядоченное) распределение материи вместо высокоэнтропийного (сильно разупорядоченного) неоднородного распределения материи, такого как популяция разнообразных чёрных дыр? И почему распределение кривизны по пространству было гладким, упорядоченным и однородным с экстремально высокой точностью, а не пронизанным различными гигантскими искажениями и замысловатыми искривлениями, вроде того, которое могло бы генерироваться чёрными дырами?
Как впервые детально продемонстрировали Пол Дэвис и Дон Пейдж, {150} инфляционная космология предлагает важный прорыв в решении этих проблем. Чтобы увидеть это, надо помнить, что существенная часть этой загадки заключается в том, что если где-то возникла избыточная концентрация вещества, то гравитационное притяжение этой скученности собирает ещё больше материала, заставляя её расти дальше; соответственно, если в пространстве сформировалась небольшая морщинка, её большее гравитационное притяжение будет стремиться сделать её ещё более глубокой, приводя к сильно неоднородной пространственной кривизне. Когда гравитация существенна, обычные, ничем не примечательные высокоэнтропийные конфигурации характеризуются неровностями и неоднородностью.
Но отметим следующее: эти рассуждения относятся исключительно к обычной притягивающейгравитации. Скученность и неровности растут потому, что они сильно притягиваютокружающий материал, приглашая его присоединиться к сгустку. Однако в течение короткой инфляционной фазы гравитация была отталкивающей, и это всё меняет. Возьмём форму пространства. Гигантское действие отталкивающей гравитации приводит пространство к такому быстрому раздуванию, что начальные изгибы и деформации растягиваются в нечто совершенно гладкое, примерно как разглаживаются складки сморщенного воздушного шарика, когда его надувают. [72]И, что ещё существеннее, поскольку во время короткого инфляционного периода объём пространства возрастает в колоссальное число раз, то и плотность сгустков материи колоссально разбавляется, примерно как упала бы плотность рыбок в вашем аквариуме, если бы его объём неожиданно возрос до размеров Олимпийского плавательного бассейна. Таким образом, хотя притягивающая гравитация заставляет сгущения материи и неровности пространства расти, отталкивающая гравитация действует противоположным образом: она заставляет их уменьшаться, приводя к всё более гладкому, всё более однородному результату.
71
Некоторые исследователи, включая Алана Гута и Эдди Фархи, изучали, можно ли гипотетически создать новую Вселенную в лаборатории путём синтеза кусочка поля инфлатона. Абстрагируясь от факта, что мы всё ещё не имеем прямого экспериментального доказательства того, что существует такая вещь, как поле инфлатона, отметим, что десять килограммов поля инфлатона нужно было бы втиснуть в ничтожный объём пространства размером около 10 ?26см, а потому плотность была бы гигантской — примерно в 10 67раз больше плотности атомных ядер, — а это находится за пределами того, что мы можем сделать сейчас или, вероятно, когда-либо.
72
Не надо путать: инфляционное растягивание квантовых флуктуаций, обсуждавшееся в предыдущем разделе, по-прежнему производит мелкие неизбежные неоднородности с частотой порядка 1 к 100 000. Но эта мелкая неоднородность накладывается поверх гладкой Вселенной. Возникновение именно этой гладкой и однородной Вселенной мы сейчас и описываем.