The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolutio - Isaacson Walter (книги полностью .txt) 📗
Like Moses, Engelbart would not actually make it to that promised land. Instead it would be Kay and a merry band of colleagues at the research center of a copier company who would be at the forefront of bringing the ideas of Licklider and Engelbart into the paradise of personal computing.
Kay had learned to love both the sciences and humanities as a child in central Massachusetts, where he was born in 1940. His father was a physiologist who designed artificial legs and arms. On long walks with him, Kay developed a love of science. But he also became passionate about music. His mother was an artist and musician, just as was her father, Clifton Johnson, a noted illustrator and author who played the pipe organ at their local church. “Since my father was a scientist and my mother was an artist, the atmosphere during my early years was full of many kinds of ideas and ways to express them. I did not distinguish between ‘art’ and ‘science’ and still don’t.”46
At seventeen he went away to music camp, where he played guitar and was a member of the jazz band. He also, like his grandfather, loved pipe organs, and he eventually helped a master builder construct one in the Spanish baroque style for a Lutheran seminary. He was a savvy and well-read student who often got in trouble in school, mainly for insubordination, a trait of many tech innovators. He was almost expelled, but he also starred on the national radio show Quiz Kids.
Kay enrolled in Bethany College in West Virginia to study math and biology, but he was kicked out during the spring of his first year after “excessive unexcused absences.” For a while he hung out in Denver, where a friend had taken a job tending to United Airlines’ reservation computer system. Kay was struck that the computers seemed to increase rather than reduce drudge work for humans.
Faced with being drafted, he enlisted in the Air Force, where his top scores on an aptitude test led him to be tapped for training as a computer programmer. He worked on the IBM 1401, the first widely marketed computer for small businesses. “This was back in the days when programming was a low-status profession and most of the programmers were women,” he said. “They were really good. My boss was a woman.”47 When his service was over, he enrolled at the University of Colorado, where he indulged all of his passions: he studied biology, mathematics, music, and theater while programming supercomputers at the National Center for Atmospheric Research.
He wandered off to graduate school at the University of Utah, which he ended up considering “the best luck I ever had.” The computer science pioneer David Evans was building there the best graphics program in the country. On the day that Kay arrived in the fall of 1966, Evans handed him a document from a stack on his desk and told him to read it. It was the MIT doctoral dissertation of Ivan Sutherland, who was then teaching at Harvard but would soon move to Utah. Written under the supervision of the information theorist Claude Shannon, the thesis was titled “Sketchpad: A Man-Machine Graphical Communications System.”48
Sketchpad was a computer program that pioneered the use of a graphical user interface, one that displayed icons and graphics on the display screen, the way today’s computers do. The graphics, which could be created and manipulated with a light pen, provided a charming new way for humans and computers to interact. “The Sketchpad system makes it possible for a man and a computer to converse rapidly through the medium of line drawings,” Sutherland wrote. The realization that art and technology could combine to create a delightful computer interface appealed to Kay’s childlike enthusiasm for making sure that the future would turn out to be fun. Sutherland’s ideas, he said, were “a glimpse of heaven” and “imprinted” him with a passion for creating friendly personal computers.49
His first contact with Engelbart came in early 1967, a few months after being turned on to Sutherland’s Sketchpad ideas. Engelbart was on a tour of universities, lecturing on the ideas that he would eventually put on display in his Mother of All Demos and lugging a Bell & Howell projector so that he could show a film of his oNLine System. “He would freeze frame and run it at different speeds forward and backward,” Kay recalled. “He would say, ‘Here’s the cursor. Watch what it’s going to do next!’?”50
The field of computer graphics and natural user interfaces was on fire, and Kay soaked up ideas from many sources. He heard a lecture by MIT’s Marvin Minsky on artificial intelligence and the dreadful way that schools were crushing the creativity of young students by not teaching them to deal imaginatively with complexity. “He put forth a terrific diatribe against traditional education methods,” Kay remembered.51 He then met Minsky’s colleague Seymour Papert, who had created a programming language called LOGO that was simple enough for a school kid to use. Among its many tricks was allowing students to use simple commands to control a robotic turtle moving around the classroom. After hearing Papert, Kay began drawing sketches of what a kid-friendly personal computer might look like.
At a conference at the University of Illinois, Kay saw a rudimentary flat-screen display, made of thin glass with neon gas. Putting that together in his mind with Engelbart’s demonstrations of the oNLine System, and roughly calculating the effect of Moore’s Law, he realized that graphical displays with windows, icons, hypertext, and a mouse-controlled cursor could be incorporated in small computers within a decade. “I was almost frightened by the implications,” he said, indulging his flair for dramatic storytelling. “It must have been the same kind of disorientation people had after reading Copernicus and first looked up from a different Earth to a different Heaven.”
Kay saw the future with great clarity, and he became impatient to invent it. “There would be millions of personal machines and users, mostly outside of direct institutional control,” he realized. This would require the creation of small personal computers with graphical displays easy enough for a kid to use and cheap enough for every individual to own. “It all came together to form an image of what a personal computer really should be.”
In his doctoral thesis he described some of its traits, most notably that it should be simple (“It must be learnable in private”) and friendly (“Kindness should be an integral part”). He was designing a computer as if he were a humanist as well as an engineer. He drew inspiration from an Italian printer in the early sixteenth century named Aldus Manutius, who realized that personal books would need to fit into saddlebags and thus produced ones of the size now common. Likewise, Kay recognized that the ideal personal computer had to be no larger than a notebook. “It was easy to know what to do next,” he recalled. “I built a cardboard model of it to see what it would look and feel like.”52
Kay had been inspired by what Engelbart was trying to do at his Augmentation Research Center. But instead of taking a job there, he joined the Stanford Artificial Intelligence Laboratory (SAIL), run by Professor John McCarthy. It was not a good fit. Because McCarthy was focused on artificial intelligence, rather than on ways to augment human intelligence, he had little interest in personal computers. He believed instead in large computers that would be time-shared.
In an academic paper he delivered in 1970, just after Kay came to SAIL, McCarthy described his vision of time-sharing systems that used terminals with little processing power or memory of their own. “The terminal is to be connected by the telephone system to a time-shared computer which, in turn, has access to files containing all books, magazines, newspapers, catalogs, airline schedules,” he wrote. “Through the terminal the user can get any information he wants, can buy and sell, could communicate with persons and institutions, and process information in other useful ways.”53