The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolutio - Isaacson Walter (книги полностью .txt) 📗
Based on this report, Congress established the National Science Foundation. At first Truman vetoed the bill because it mandated that the director be appointed by an independent board rather than the president. But Bush turned Truman around by explaining that this would buffer him from those seeking political favors. “Van, you should be a politician,” Truman told him. “You have some of the instincts.” Bush replied, “Mr. President, what the hell do you think I’ve been doing around this town for five or six years?”10
The creation of a triangular relationship among government, industry, and academia was, in its own way, one of the significant innovations that helped produce the technological revolution of the late twentieth century. The Defense Department and National Science Foundation soon became the prime funders of much of America’s basic research, spending as much as private industry during the 1950s through the 1980s.I The return on that investment was huge, leading not only to the Internet but to many of the pillars of America’s postwar innovation and economic boom.11
A few corporate research centers, most notably Bell Labs, existed before the war. But after Bush’s clarion call produced government encouragement and contracts, hybrid research centers began to proliferate. Among the most notable were the RAND Corporation, originally formed to provide research and development (hence the name) to the Air Force; Stanford Research Institute and its offshoot, the Augmentation Research Center; and Xerox PARC. All would play a role in the development of the Internet.
Two of the most important of these institutes sprang up around Cambridge, Massachusetts, just after the war: Lincoln Laboratory, a military-funded research center affiliated with MIT, and Bolt, Beranek and Newman, a research and development company founded and populated by MIT (and a few Harvard) engineers. Closely associated with both of them was an MIT professor with a Missouri drawl and an easygoing talent for teambuilding. He would become the single most important person in creating the Internet.
J. C. R. LICKLIDER
In searching for fathers of the Internet, the best person to start with is a laconic yet oddly charming psychologist and technologist, with an open-faced grin and show-me attitude, named Joseph Carl Robnett Licklider, born in 1915 and known to everyone as “Lick.” He pioneered the two most important concepts underlying the Internet: decentralized networks that would enable the distribution of information to and from anywhere, and interfaces that would facilitate human-machine interaction in real time. Plus, he was the founding director of the military office that funded the ARPANET, and he returned for a second stint a decade later when protocols were created to weave it into what became the Internet. Said one of his partners and proteges, Bob Taylor, “He was really the father of it all.”12
Licklider’s father was a poor Missouri farm boy who became a successful insurance salesman in St. Louis and then, when the Depression wiped him out, a Baptist minister in a tiny rural town. As a doted-upon only child, Lick turned his bedroom into a model plane production facility and rebuilt clunker cars with his mother standing by his side handing him tools. Nevertheless, he felt trapped growing up in an isolated rural area filled with barbed-wire fences.
He escaped first to Washington University in St. Louis and then, after getting a doctorate in psychoacoustics (how we perceive sounds), joined Harvard’s psychoacoustics lab. Increasingly interested in the relationship between psychology and technology, how human brains and machines interacted, he moved to MIT to start a psychology section based in the Electrical Engineering Department.
At MIT Licklider joined the eclectic circle of engineers, psychologists, and humanists gathered around Professor Norbert Wiener, a theorist who studied how humans and machines worked together and coined the term cybernetics, which described how any system, from a brain to an artillery aiming mechanism, learned through communications, control, and feedback loops. “There was tremendous intellectual ferment in Cambridge after World War II,” Licklider recalled. “Wiener ran a weekly circle of forty or fifty people who got together. They would gather together and talk for a couple of hours. I was a faithful adherent to that.”13
Unlike some of his MIT colleagues, Wiener believed that the most promising path for computer science was to devise machines that would work well with human minds rather than try to replace them. “Many people suppose that computing machines are replacements for intelligence and have cut down the need for original thought,” Wiener wrote. “This is not the case.”14 The more powerful the computer, the greater the premium that will be placed on connecting it with imaginative, creative, high-level human thinking. Licklider became an adherent of this approach, which he later called “man-computer symbiosis.”
Licklider had a mischievous but friendly sense of humor. He loved watching the Three Stooges and was childishly fond of sight gags. Sometimes, when a colleague was about to give a slide presentation, Licklider would slip a photo of a beautiful woman into the projector’s carousel. At work he energized himself with a steady supply of Cokes and candies from the vending machines, and he gave out Hershey bars to his kids and students whenever they delighted him. He was also devoted to his graduate students, whom he would invite to dinners at his home in the Boston suburb of Arlington. “To him, collaboration was what it was all about,” his son Tracy said. “He wandered around setting up islands of people and encouraging them to be inquisitive and solve problems.” That was one reason he became interested in networks. “He knew that getting good answers involved distant collaboration. He loved spotting talented people and tying them together in a team.”15
His embrace, however, did not extend to people who were pretentious or pompous (with the exception of Wiener). When he thought a speaker was spouting nonsense, he would stand up and ask what seemed to be innocent but were in fact devilish questions. After a few moments, the speaker would realize he had been deflated and Licklider would sit down. “He didn’t like poseurs or pretenders,” Tracy recalled. “He was never mean, but he slyly pricked people’s pretensions.”
One of Licklider’s passions was art. Whenever he traveled he would spend hours at museums, sometimes dragging along his two reluctant children. “He became a nut about it, couldn’t get enough of it,” said Tracy. Sometimes he would spend five hours or more in a museum marveling at each brushstroke, analyzing how each picture came together, and attempting to fathom what it taught about creativity. He had an instinct for spotting talent in all fields, arts as well as sciences, but he felt that it was most easy to discern in its purest forms, such as the brushstroke of a painter or the melodic refrain of a composer. He said he looked for the same creative strokes in the designs of computer or network engineers. “He became a really skilled scout of creativity. He often discussed what made people creative. He felt it was easier to see in an artist, so he tried even harder to spot it in engineering, where you can’t see the brushstrokes quite as readily.”16
Most important, Licklider was kind. When he worked at the Pentagon later in his career, according to his biographer Mitchell Waldrop, he noticed the cleaning woman admiring the art prints on his wall late one evening. She told him, “You know, Dr. Licklider, I always leave your room until last because I like to have time by myself, with nothing pressing, to look at the pictures.” He asked which print she liked most, and she pointed to a Cezanne. He was thrilled, since it was his favorite, and he promptly gave it to her.17