The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolutio - Isaacson Walter (книги полностью .txt) 📗
Later Jennings complained, in the tradition of Ada Lovelace, that many of the newspaper reports overstated what ENIAC could do by calling it a “giant brain” and implying that it could think. “The ENIAC wasn’t a brain in any sense,” she insisted. “It couldn’t reason, as computers still cannot reason, but it could give people more data to use in reasoning.”
Jennings had another complaint that was more personal: “Betty and I were ignored and forgotten following the demonstration. We felt as if we had been playing parts in a fascinating movie that suddenly took a bad turn, in which we had worked like dogs for two weeks to produce something really spectacular and then were written out of the script.” That night there was a candle-lit dinner at Penn’s venerable Houston Hall. It was filled with scientific luminaries, military brass, and most of the men who had worked on ENIAC. But Jean Jennings and Betty Snyder were not there, nor were any of the other women programmers.74 “Betty and I weren’t invited,” Jennings said, “so we were sort of horrified.”75 While the men and various dignitaries celebrated, Jennings and Snyder made their way home alone through a very cold February night.
THE FIRST STORED-PROGRAM COMPUTERS
The desire of Mauchly and Eckert to patent—and profit from—what they had helped to invent caused problems at Penn, which did not yet have a clear policy for divvying up intellectual property rights. They were allowed to apply for patents on ENIAC, but the university then insisted on getting royalty-free licenses as well as the right to sublicense all aspects of the design. Furthermore, the parties couldn’t agree on who would have rights to the innovations on EDVAC. The wrangling was complex, but the upshot was that Mauchly and Eckert left Penn at the end of March 1946.76
They formed what became the Eckert-Mauchly Computer Corporation, based in Philadelphia, and were pioneers in turning computing from an academic to a commercial endeavor. (In 1950 their company, along with the patents they would be granted, became part of Remington Rand, which morphed into Sperry Rand and then Unisys.) Among the machines they built was UNIVAC, which was purchased by the Census Bureau and other clients, including General Electric.
With its flashing lights and Hollywood aura, UNIVAC became famous when CBS featured it on election night in 1952. Walter Cronkite, the young anchor of the network’s coverage, was dubious that the huge machine would be much use compared to the expertise of the network’s correspondents, but he agreed that it might provide an amusing spectacle for viewers. Mauchly and Eckert enlisted a Penn statistician, and they worked out a program that compared the early results from some sample precincts to the outcomes in previous elections. By 8:30 p.m. on the East Coast, well before most of the nation’s polls had closed, UNIVAC predicted, with 100-to-1 certainty, an easy win for Dwight Eisenhower over Adlai Stevenson. CBS initially withheld UNIVAC’s verdict; Cronkite told his audience that the computer had not yet reached a conclusion. Later that night, though, after the vote counting confirmed that Eisenhower had won handily, Cronkite put the correspondent Charles Collingwood on the air to admit that UNIVAC had made the prediction at the beginning of the evening but CBS had not aired it. UNIVAC became a celebrity and a fixture on future election nights.77
Eckert and Mauchly did not forget the importance of the women programmers who had worked with them at Penn, even though they had not been invited to the dedication dinner for ENIAC. They hired Betty Snyder, who, under her married name, Betty Holberton, went on to become a pioneer programmer who helped develop the COBOL and Fortran languages, and Jean Jennings, who married an engineer and became Jean Jennings Bartik. Mauchly also wanted to recruit Kay McNulty, but after his wife died in a drowning accident he proposed marriage to her instead. They had five children, and she continued to help on software design for UNIVAC.
Mauchly also hired the dean of them all, Grace Hopper. “He let people try things,” Hopper replied when asked why she let him talk her into joining the Eckert-Mauchly Computer Corporation. “He encouraged innovation.”78 By 1952 she had created the world’s first workable compiler, known as the A-0 system, which translated symbolic mathematical code into machine language and thus made it easier for ordinary folks to write programs.
Like a salty crew member, Hopper valued an all-hands-on-deck style of collaboration, and she helped develop the open-source method of innovation by sending out her initial versions of the compiler to her friends and acquaintances in the programming world and asking them to make improvements. She used the same open development process when she served as the technical lead in coordinating the creation of COBOL, the first cross-platform standardized business language for computers.79 Her instinct that programming should be machine-independent was a reflection of her preference for collegiality; even machines, she felt, should work well together. It also showed her early understanding of a defining fact of the computer age: that hardware would become commoditized and that programming would be where the true value resided. Until Bill Gates came along, it was an insight that eluded most of the men.IV
Von Neumann was disdainful of the Eckert-Mauchly mercenary approach. “Eckert and Mauchly are a commercial group with a commercial patent policy,” he complained to a friend. “We cannot work with them directly or indirectly in the same open manner in which we would work with an academic group.”80 But for all of his righteousness, von Neumann was not above making money off his ideas. In 1945 he negotiated a personal consulting contract with IBM, giving the company rights to any inventions he made. It was a perfectly valid arrangement. Nevertheless, it outraged Eckert and Mauchly. “He sold all our ideas through the back door to IBM,” Eckert complained. “He spoke with a forked tongue. He said one thing and did something else. He was not to be trusted.”81
After Mauchly and Eckert left, Penn rapidly lost its role as a center of innovation. Von Neumann also left, to return to the Institute for Advanced Study in Princeton. He took with him Herman and Adele Goldstine, along with key engineers such as Arthur Burks. “Perhaps institutions as well as people can become fatigued,” Herman Goldstine later reflected on the demise of Penn as the epicenter of computer development.82 Computers were considered a tool, not a subject for scholarly study. Few of the faculty realized that computer science would grow into an academic discipline even more important than electrical engineering.
Despite the exodus, Penn was able to play one more critical role in the development of computers. In July 1946 most of the experts in the field—including von Neumann, Goldstine, Eckert, Mauchly, and others who had been feuding—returned for a series of talks and seminars, called the Moore School Lectures, that would disseminate their knowledge about computing. The eight-week series attracted Howard Aiken, George Stibitz, Douglas Hartree of Manchester University, and Maurice Wilkes of Cambridge. A primary focus was the importance of using stored-program architecture if computers were to fulfill Turing’s vision of being universal machines. As a result, the design ideas developed collaboratively by Mauchly, Eckert, von Neumann, and others at Penn became the foundation for most future computers.
The distinction of being the first stored-program computers went to two machines that were completed, almost simultaneously, in the summer of 1948. One of them was an update of the original ENIAC. Von Neumann and Goldstine, along with the engineers Nick Metropolis and Richard Clippinger, worked out a way to use three of ENIAC’s function tables to store a rudimentary set of instructions.83 Those function tables had been used to store data about the drag on an artillery shell, but that memory space could be used for other purposes since the machine was no longer being used to calculate trajectory tables. Once again, the actual programming work was done largely by the women: Adele Goldstine, Klara von Neumann, and Jean Jennings Bartik. “I worked again with Adele when we developed, along with others, the original version of the code required to turn ENIAC into a stored-program computer using the function tables to store the coded instructions,” Bartik recalled.84