Ткань космоса. Пространство, время и текстура реальности - Грин Брайан (книги онлайн бесплатно без регистрации полностью .txt) 📗
Рис. 12.8.Соединение Вселенной с тремя обычными измерениями, представленными сеткой, и ( а) двух свёрнутых измерений в форме пустых сфер; ( б) трёх свёрнутых измерений в форме сплошных шаров
Продвинемся ещё на одно измерение дальше. На рис. 12.8 амы рассмотрели только поверхность сфер. Представьте теперь, что ткань пространства включает также и внутренность сфер, как на рис. 12.8 б, — наш планковский червячок может проникнуть во внутренность сферы, как обычный червяк это делает с яблоком, и свободно там передвигаться. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяжённых пространственных измерениях, и ещё три, чтобы определить его положение в шаре, прикреплённом к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример Вселенной с семью пространственно-временными измерениями.
Теперь сделаем скачок. Хотя это невозможно нарисовать, представьте, что в каждой точке в трёх протяжённых измерениях повседневной жизни Вселенная имеет не одно дополнительное измерение как на рис. 12.7, не два дополнительных измерения, как на рис. 12.8 а, не три дополнительных измерения, как на рис. 12.8 б, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но смысл ясен. Чтобы задать пространственное положение червячка планковского размера в такой Вселенной, требуется девять блоков данных: три, чтобы задать его положение в обычных протяжённых измерениях, и ещё шесть, чтобы определить его положение в свёрнутых измерениях, прикреплённых к этой точке. Когда принимается во внимание и время, это оказывается Вселенной с десятимерным пространством-временем, как требуют уравнения теории струн. Если дополнительные шесть измерений свёрнуты в достаточно малые образования, они легко ускользнут от обнаружения.
Форма скрытых измерений
Уравнения теории струн на самом деле определяют больше, чем просто число пространственных измерений. Они также определяют, какую форму могут принимать дополнительные размерности. {170} На предыдущих рисунках мы сосредоточились на простейших формах — окружности, полые сферы, сплошные шары, — но уравнения теории струн выбирают существенно более сложный класс шестимерных форм, известных как пространства или многообразия Калаби–Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шин-Тун Яу, которые математически открыли их задолго до того, как была понята их связь с теорией струн; грубая иллюстрация одного примера дана на рис. 12.9 а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже в этих условиях рисунок даёт грубое представление о том, на что похожи эти многообразия. Если то частное пространство Калаби–Яу, которое показано на рис. 12.9 а, составляет дополнительные шесть измерений теории струн, то пространство на ультрамикроскомическом масштабе будет иметь вид, показанный на рис. 12.9 б. Поскольку пространство Калаби–Яу прикреплено к каждой точке в трёх обычных измерениях, вы, и я, и кто угодно другой окружены и заполнены этими маленькими формами. Буквально, если вы перемещаетесь из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и последовательно проходя через целые многообразия, так что в среднем кажется, будто вы вовсе не двигаетесь через шесть дополнительных измерений.
Рис. 12.9.( а) Один из примеров многообразия (или пространства) Калаби–Яу. ( б) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби–Яу
Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.
Физика струн и дополнительные измерения
Красота общей теории относительности в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, естественно, можете предположить, что мощь геометрии в определении физики может значительно возрасти. И это действительно так. Чтобы это увидеть, рассмотрим вопрос, который я до сих пор обходил стороной. Почему теория струн требует десять пространственно-временных измерений? Это вопрос, на который трудно ответить без привлечения математики, но я попытаюсь объяснить, как это получается в результате взаимодействия геометрии и физики.
Представьте струну, которая может колебаться только вдоль двумерной поверхности плоского стола. Струна будет в состоянии колебаться разными способами, но только такими, которые включают движения в направлениях вправо/влево и вперёд/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, которое выходит за пределы поверхности стола, становятся допустимыми дополнительные моды колебаний. Итак, хотя это и трудно изобразить более чем в трёх измерениях, это заключение — большее количество измерений означает большее количество мод колебаний — является общим. Если струна может колебаться в четвёртом пространственном измерении, она может колебаться большим числом способов, по сравнению с тремя измерениями; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырёх измерениях; и т. д. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и её уравнения становятся бессмысленными. Во Вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний всё ещё слишком мало; для пяти, шести, семи или восьми измерений оно всё ещё слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений. [80] {171}
Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их связь в рамках теории струн идёт ещё дальше и, фактически, обеспечивает способ решения критической проблемы, с которой мы сталкивались ранее. Напомним, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых мод колебаний струны и, более того, точные свойства мод колебаний не соответствуют свойствам известных частиц материи и переносчиков взаимодействий. Но, хотя такие вычисления и принимали в расчёт числодополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчёт малый размер и сложную формудополнительных измерений — они предполагали, что все пространственные измерения плоские и полностью развёрнутые, — а это приводит к существенным отличиям. Я не упоминал об этом раньше, поскольку мы тогда ещё не обсуждали идею дополнительных измерений.
Струны столь малы, что даже когда дополнительные шесть измерений свёрнуты в пространство Калаби–Яу, они могут колебаться в этих направлениях. Это чрезвычайно важно по двум причинам. Во-первых, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому условие на число мод колебаний продолжает выполняться, даже когда дополнительные измерения свёрнуты. Во-вторых, точно так же, как на колебания потока воздуха, продуваемого через трубу, влияют повороты и изгибы музыкального инструмента, моды колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав трубу длиннее, моды колебаний воздуха и, следовательно, звук инструмента изменятся. Аналогично, если форму и размер дополнительных измерений модифицировать, это также существенно повлияет на точные свойства возможных способов колебаний струны. А поскольку способ колебания струны определяет её массу и заряд, то это значит, что дополнительные измерения играют центральную роль в определении свойств частиц.
80
Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнёмся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн, являются приближёнными (точные уравнения оказывается трудно найти и понять). Однако большинство думает, что приближённые уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к изумлению большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближённые уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компрометирует материал, обсуждаемый в этой главе, но показывает, что он должен быть вложен в более широкую, фактически ещё более унифицированную схему. {226}